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Abstract

In this paper a class of eigenvalue problems for hemivariational inequalities is studied which is
defined on domains of the type� × R (� is a bounded open subset ofRm, m�1) and it involves
concave–convex nonlinearities. Under suitable conditions on the nonlinearities, two nontrivial so-
lutions are obtained which belong to a special closed convex cone ofH1

0 (� × R) whenever the
eigenvalues are of certain range. Our approach is variational, the main tool in our investigation is the
critical point theory developed by Motreanu and Panagiotopoulos [Minimax Theorems and Qualitative
Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht,
1999, Chapter 3].
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elliptic equations defined on domains of the form�=�×RN−m (where� is a bounded
open set inRm with smooth boundary,m�1 andN−m�1) have been studied by
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many authors, motivated by various problems from mathematical physics (as the Klein-
Gordon or Schrödinger equations); without seeking completeness, we refer the readers to
[5,7,9,10,18,20]. In these papers the approach is variational; an appropriate (smooth) energy
functional onH 1

0 (�) is defined whose critical points are (weak) solutions of the investi-
gated problem. Since� is unbounded, the use of standard variational techniques become
delicate, due to the lack of compactness of the embeddingH 1

0 (�) ↪→ Lp(�), p ∈ [2,2∗).
As usually, 2∗ is the Sobolev critical exponent, i.e. 2∗ = 2N/(N − 2) whenN�3, and
2∗ = +∞ whenN = 2.

First of all, we point out that there is a fundamental difference between problems where
N−m�2 andN−m=1, respectively. Indeed, the subspace of axially symmetric functions
of H 1

0 (�), denoted further byH 1
0,s(�), regains the compactness of the embedding into

Lp(�) as soon asN −m�2 andp ∈ (2,2∗), see[8, Theorem 1]. SinceH 1
0,s(�) is exactly

the fixed point set ofH 1
0 (�) under the group actionidm × O(N − m), it is enough to

find critical points for the functional which is restricted toH 1
0,s(�). Due to the principle

of symmetric criticality of Palais, these points will be critical points also for the initial
functional, thus solutions for the studied problem. Such points can be obtained by various
techniques (for example by minimization[7], minimax arguments[9,20]). We notice that
one can also meet some concrete problems which involve discontinuous nonlinearities on
this type of domains; in such cases a non-smooth approach is used, see[12,13].

On the other hand, whenN − m = 1, i.e. � = � × R (with � as above), the situation
changes radically. In spite of that one encounters important problems in this case (see for
instance[2,4]), only a few existence results are known, see[3,7]. The difficulty lies in the
fact thatH 1

0,s(�× R) cannot be embedded compactly intoLp(�× R) for anyp ∈ [2,2∗),
thus the above described machinery does not work any more. However, Lions[14, Théorème
III.2] (see also[8]) observed that defining the closed convex cone

K = {u ∈ H 1
0 (� × R) : u is nonnegative,

y �→ u(x, y) is nonincreasing forx ∈ �, y�0, and

y �→ u(x, y) is nondecreasing forx ∈ �, y�0}, (K)

the bounded subsets ofK are relatively compact inLp(� × R) wheneverp ∈ (2,2∗).
Burton[5] was the first who exploited in its entirety the above ’compactness’; namely, by
means of a version of the Mountain Pass theorem (due to Hofer[11] for an order-preserving
operator on Hilbert spaces), he was able to establish the existence of a nontrivial solution
for an elliptic equation on domains of the type�× R. The main ingredient in his proof was
the symmetric decreasing rearrangement of the suitable functions, proving that the coneK
remains invariant under a carefully chosen nonlinear operator, which is an indispensable
hypothesis in the Hofer’s result.

The main goal of this paper is to give a new approach to treat elliptic (eigenvalue)
problems on domains of the type� = � × R. The genesis of our method can be found
in [17, Chapter 3], where Motreanu and Panagiotopoulos developed a new critical point
theory for locally Lipschitz functions which are perturbed by convex, proper and lower
semicontinuous functionals. Since the indicator function of a closed convex subset of a
vector space possesses exactly the latter properties, this approach arises in a natural manner
as it was already forecasted in[12].
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In order to formulate our problem, we shall consider a Carathéodory functionF : (� ×
R)× R → R which is locally Lipschitz in the second variable such that

(F1) F(x,0)= 0, and there existc1>0 andp ∈ (2,2∗) such that

|�|�c1(|s| + |s|p−1), ∀� ∈ �F(x, s), (x, s) ∈ (� × R)× R.

We denoted by�F(x, s) the generalized gradient ofF(x, ·) at the points ∈ R. Let a ∈
L1(� × R)∩L∞(� × R) with a�0, a /≡ 0, andq ∈ (1,2). Keeping in mind the notation
K from (K), for �>0, denote by(P�) the followingvariational-hemivaritional inequality
problem:

Find u ∈ K such that∫
�×R

∇u(x)∇(v(x)− u(x))dx +
∫
�×R

F 0(x, u(x); −v(x)+ u(x))dx

��
∫
�×R

a(x)|u(x)|q−2u(x)(v(x)− u(x))dx, ∀v ∈ K.

The expressionF 0(x, s; t) stands for the generalized directional derivative ofF(x, ·) at the
point s ∈ R in the directiont ∈ R.

To investigate the existence of solutions of(P�) we shall construct a functionalJ� :
H 1

0 (� × R) → R associated to(P�) which is defined by

J�(u)= 1

2

∫
�×R

|∇u|2 −
∫
�×R

F(x, u(x))dx − �
q

∫
�×R

a(x)|u|q + �K(u),

where�K is the indicator function of the setK.We will see that

H� : u �→ 1

2

∫
�×R

|∇u|2 −
∫
�×R

F(x, u(x))dx − �
q

∫
�×R

a(x)|u|q

is a locally Lipschitz function. Therefore,J� =H� +�K is a Motreanu–Panagiotopoulos
type functional (see[17, Chapter 3]). If u �→ H�(u) is of classC1 (for further comments, see
Remark 2.3) then the functionalJ�=H�+�K is of Szulkin type, see[19]. Proposition 4.2
asserts that the critical points ofJ� in the sense of Motreanu–Panagiotopoulos are solutions
of the (P�). Hence, it remains to study the critical points ofJ�, where we shall apply the
Mountain Pass theorem adopted to this kind of functional and a local minimization argument
as well, in order to obtain two nontrivial solutions of(P�) for certain values of� ∈ R. It
is not clear under which conditions we are able to guarantee infinitely many solutions for
(P�), not even in the case whenH� is an even functional; unfortunately, the symmetric
version of the Mountain Pass theorem, see[17, Corollary 3.6], cannot be applied toJ� since
�K is not even. We point out that although by means of the Motreanu–Panagiotopoulos
type functional several important questions have been solved (see for instance[15–17]),
our result seems to give a genuinely new applicability of this critical point theory.

The paper is organized as follows. In the next section we give further hypotheses onF
and we will formulate our main result. In Section 3 we recall some basic notions about
the Motreanu–Panagiotopoulos type functionals; in Section 4 some auxiliary results are
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collected; in Section 5 we verify the Palais–Smale condition; in Section 6 the first solution
of (P�) is constructed by means of the Mountain Pass theorem, while in the last section
we prove the existence of the second solution of (P�) by means of the Ekeland variational
principle.

Notations.

• � = � × R.
• The norm ofL�(�) will be denoted by‖ · ‖�, ��1.
• H 1

0 (�) is the usual Sobolev space endowed with the inner product〈u, v〉0 =∫
� ∇u∇vdx

and norm‖·‖0=√〈·, ·〉0. Since� has the cone property, we have the continuous embed-
dingH 1

0 (�) ↪→ L�(�), � ∈ [2,2∗], that is, there existsk�>0 such that‖u‖��k�‖u‖0
for all u ∈ H 1

0 (�).

2. Main result

Besides (F1) we make the following assumptions on the nonlinearityF :

(F2)

lim
s→0

max{|�| : � ∈ �F(x, s)}
s

= 0 uniformly for everyx ∈ �.

(F3) There exists�>2 such that

�F(x, s)+ F 0(x, s; −s)�0, ∀(x, s) ∈ � × R.

(F4) There existsR>0 such that

inf {F(x, s) : (x, |s|) ∈ � × [R,∞)}>0.

Remark 2.1. One can deduce that 0∈ K is a solution of (P�) for every� ∈ R. Indeed, take
a sequence{sn} which tends to 0 and�n ∈ �F(x, sn). In view of (F2) one has necessarily
that

lim
s→0

max{|�| : � ∈ �F(x, s)} = 0,

thus, in particular,�n → 0 asn → +∞. Due to the (weakly*-) closedness of the set-valued
map�F(x, ·),see[6, Proposition 2.1.5(b), p. 29], we have 0∈ �F(x,0), i.e.F 0(x,0, w)�0
for every(x,w) ∈ � × R.

In order to obtain nontrivial solutions of (P�), we shall prove the following theorem which
constitutes the main result of this paper.

Theorem 2.1. Let F : � × R → R be a function which satisfies(F1)–(F4).Then there
exists�0>0 such that(P�) has at least two nontrivial, distinct solutionsu1

�, u2
� ∈ K

whenever� ∈ (0, �0).

Next we make some further remarks about the hypotheses we considered.
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Remark 2.2. (P�) is a problem which involves concave–convex nonlinearities. Indeed, the
numberq is supposed to be in the interval(1,2) while in Lemma 4.2 we shall prove that
s �→ F(x, s) has a superquadratic growth at infinity, due to (F1)–(F4).

Remark 2.3. Let f : � × R → R be a measurable (not necessarily continuous) function
and suppose that there existsc >0 such that for somep ∈ (2,2∗) one has|f (x, s)|�c(|s|+
|s|p−1) for every(x, s) ∈ R×�.DefineF : �×R → R byF(x, s)=∫ s

0 f (x, t)dt . ThenF
is a Carathéodory function which is locally Lipschitz in the second variable which satisfies
the growth condition from (F1). Indeed, sincef (x, ·) ∈ L∞

loc(R), by [17, Proposition 1.7]
we have�F(x, s)= [f (x, s), f (x, s)] for every(x, s) ∈ � × R where

f (x, s)= lim
�→0+ essinf

|t−s|<�
f (x, t) and f (x, s)= lim

�→0+ esssup
|t−s|<�

f (x, t).

If f is continuous in the second variable, then�F(x, s) = {f (x, s)} for every(x, s) ∈
�×R.Thus, hypothesis (F1) is the non-smooth reformulation of the classical subcritical con-
dition while (F2) reduces tof (x, s)=o(s) ass → 0, uniformly for everyx ∈ �. Moreover,
(F3) becomes the well-known Ambrosetti–Rabinowitz type inequality�F(x, s)�sf (x, s),
see[1]. In this continuous case, our problem (P�) can be handled by means of the Szulkin
type functional, see[19].

Now, we give some examples where the hypotheses of Theorem 2.1 hold true.

Example 2.1. F(x, s) = F(s) = |s|p, p ∈ (2,2∗). In this case,F 0(x, s; −s) = −p|s|p.
One can choose� = p.

Example 2.2. F(x, s)=F(s)=−s3/3 if s�0, andF(x, s)=F(s)= s3 ln(2+ s) if s�0.
One can choose arbitraryp ∈ (2,2∗) and� ∈ (2,3] in (F1) and (F3), respectively.

Example 2.3. Leta0=0, andak=k−2 for k�1. Let us considerF(x, s)=F(s)=|s|3/3+∑n
k=0 ak(u

2 − k2)/2 when|s| ∈ [n, n+ 1), n ∈ N. This function is locally Lipschitz; the
hypotheses of Theorem 2.1 are verified as soon asp = 3, � = 5/2 andN ∈ {2,3,4,5}.
Notice that it is enough to verify (F3) only for positive numbers, sinceF is even and thus
F 0(s; −s)= F 0(−s; s) for everys ∈ R.

3. Motreanu–Panagiotopoulos type functionals

Let (X, ‖ · ‖) be a real Banach space andX∗ its topological dual. A functionh : X →
R is called locally Lipschitzif each pointu ∈ X possesses a neighborhoodNu such
that |h(u1) − h(u2)|�L‖u1 − u2‖ for all u1, u2 ∈ Nu, for a constantL>0 depending
on Nu. Thegeneralized directional derivativeof h at the pointu ∈ X in the direction
z ∈ X is

h0(u; z)= lim sup
w→u,t→0+

h(w + tz)− h(w)
t

.
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Thegeneralized gradientof h atu ∈ X is defined by

�h(u)= {x∗ ∈ X∗ : 〈x∗, z〉X�h0(u; z), ∀z ∈ X},
which is a nonempty, convex andw∗-compact subset ofX∗, where〈·, ·〉X is the duality
pairing betweenX∗ andX.

Let I = h + �, with h : X → R locally Lipschitz and� : X → (−∞,+∞]
convex, proper (i.e.,� /≡ +∞), and lower semicontinuous.I is called aMotreanu–
Panagioutopoulos typefunctional, see[17, Chapter 3].

Definition 3.1 (Motreanu and Panagiotopoulos[17, Definition 3.1]). An elementu ∈ X
is said to be acritical point ofI = h+ �, if

h0(u; v − u)+ �(v)− �(u)�0,∀v ∈ X.

In this case,I(u) is acritical value ofI.

Definition 3.2 (Motreanu and Panagiotopoulos[17, Definition 3.2]). The functionalI=
h+ � is said tosatisfy the Palais–Smale condition at levelc ∈ R (shortly,(PS)c) if every
sequence{un} in X satisfyingI(un) → c and

h0(un; v − un)+ �(v)− �(un)� − 	n‖v − un‖, ∀v ∈ X,

for a sequence{	n} in [0,∞) with 	n → 0, contains a convergent subsequence. If(PS)c is
verified for allc ∈ R,I is said tosatisfy the Palais–Smale condition(shortly, (PS).

The following version of the Mountain Pass theorem will be used in Section 6.

Proposition 3.1(Motreanu and Panagiotopoulos[17, Corollary 3.2]). Assume that the
functionalI = h + � on the Banach space X is of Motreanu–Panagiotopoulos type, to
satisfies the(PS), I(0)= 0 and

(i) there exist constants�>0 and
>0 such thatI(u)�� for all ‖u‖ = 
,
(ii) there existse ∈ X with ‖e‖>
 andI(e)�0.

Then the numberc = inf �∈� supt∈[0,1] I(�(t)), where� = {� ∈ C([0,1], X) : �(0) =
0, �(1)= e}, is a critical value ofI with c��.

Below, we collected those basic properties of the generalized directional derivative and
gradient which will be used through the whole paper.

Proposition 3.2(see Clarke[6] )). Let h : X → R be a locally Lipschitz function. Then
we have:

(i) (−h)0(u; z)= h0(u; −z), ∀u, z ∈ X.
(ii) h0(u; z)= max{〈x∗, z〉X : x∗ ∈ �h(u)}, ∀u, z ∈ X.

(iii) Let j : X → R be a continuously differentiable function. Then�j (u) = {j ′(u)},
j0(u; z) coincides with〈j ′(u), z〉X and(h+ j)0(u; z)=h0(u; z)+〈j ′(u), z〉X for all
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u, z ∈ X.Moreover, �(h+j)(u)=�h(u)+j ′(u), �(hj)(u) ⊆ j (u)�h(u)+h(u)j ′(u)
and�(�h)(u)= ��h(u) for all u ∈ X and� ∈ R.

(iv) (Lebourg’s mean value theorem)Let u andv two points inX.Then there exists a point
w in the open segment betweenu andv, andx∗

w ∈ �h(w) such that

h(u)− h(v)= 〈x∗
w, u− v〉X.

(v) (Second Chain Rule)Let Y be a Banach space andj : Y → X a continuously
differentiable function. Thenh ◦ j is locally Lipschitz and

�(h ◦ j)(y) ⊆ �h(j (y)) ◦ j ′(y), ∀y ∈ Y .

(vi) The function(u, z) �→ h0(u; z) is upper semicontinuous.

4. Auxiliary results

DefineF : H 1
0 (�) → R by

F(u)=
∫
�
F(x, u(x))dx. (1)

Proposition 4.1. LetF : � × R → R be a locally Lipschitz function which satisfies(F1).
ThenF ( from (1)) is well-defined and it is locally Lipschitz. Moreover,

F0(u;w)�
∫
�
F 0(x, u(x);w(x))dx, ∀u,w ∈ H 1

0 (�). (2)

Since the proof of the above lemma is similar to that of[12, Lemma 4.2], we shall omit
it.

By standard arguments we have that the functionalsA1, A2 : H 1
0 (�) → R, defined by

A1(u)=‖u‖2
0 andA2(u)=

∫
� a(x)|u|qdx are of classC1 with derivatives〈A′

1(u), v〉H1
0 (�)

=
2〈u, v〉0 and〈A′

2(u), v〉H1
0 (�)

=q ∫
� a(x)|u|q−2uvdx, respectively.Therefore, due to Propo-

sition 4.1 the functional

H�(u)= 1

2
‖u‖2

0 − �
q

∫
�
a(x)|u|q − F(u)

onH 1
0 (�) is locally Lipschitz. On the other hand, the indicator function of the setK, i.e.

�K(u)=
{

0 if u ∈ K,

+∞ if u /∈K,

is convex, proper, and lower semicontinuous. In conclusion,J� = H� + �K is a
Motreanu–Panagiotopoulos type functional. Moreover, one easily obtain the following:

Proposition 4.2. Fix �>0 arbitrary. Every critical pointu ∈ H 1
0 (�) ofJ� =H� + �K

is a solution of(P�).
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Proof. Sinceu ∈ H 1
0 (�) is a critical point ofJ� = H� + �K, one has

H0
�(u; v − u)+ �K(v)− �K(u)�0, ∀v ∈ H 1

0 (�).

We have immediately thatubelongs toK. Otherwise, we would have�K(u)=+∞ which
led us to a contradiction, letting for instancev = 0 ∈ K in the above inequality. Now, we
fix v ∈ K arbitrary. By using relation (2) and the properties (i) and (iii) from Proposition
3.2, we obtain the desired inequality.�

Lemma 4.1(Kristály [12, Lemma 4.1]). If F : � × R → R satisfies(F1) and (F2), for
every	>0 there existsc(	)>0 such that

(i) |�|�	|s| + c(	)|s|p−1, ∀� ∈ �F(x, s), (x, s) ∈ � × R.
(ii) |F(x, s)|�	s2 + c(	)|s|p, ∀(x, s) ∈ � × R.

Lemma 4.2. If F : � × R → R satisfies(F1), (F3)and (F4) then there existc2, c3>0
such that

F(x, s)�c2|s|� − c3s2, ∀(x, s) ∈ � × R.

Proof. First, for arbitrary fixed(x, u) ∈ �×R we consider the functiong : (0,+∞) → R

defined by

g(t)= t−�F(x, tu).

Clearly,g is a locally Lipschitz function and by the properties (iii) and (v) of Proposition
3.2 we have

�g(t) ⊆ −�t−�−1F(x, tu)+ t−�u�F(x, tu), t >0.

Let t >1. By Lebourg’s mean value theorem, there exist
 = 
(x, u) ∈ (1, t) andw
 =
w
(x, u) ∈ �g(
) such thatg(t)−g(1)=w
(t−1). Therefore, there exists�
 =�
(x, u) ∈
�F(x, 
u) such thatw
 = −�
−�−1F(x, 
u)+ 
−�u�
 and by Proposition 3.2(ii)

g(t)− g(1)� − 
−�−1[�F(x, 
u)+ F 0(x, 
u; −
u)](t − 1).

By (F3) one hasg(t)�g(1), i.e.F(x, tu)� t�F(x, u), for everyt�1. LetcR=inf {F(x, s) :
(x, |s|) ∈ � × [R,∞)}, which is a strictly positive number, due to (F4). Combining the
above facts we derive

F(x, s)� cR

R� |s|�, ∀(x, s) ∈ � × R with |s|�R. (3)

On the other hand, by (F1) we have|F(x, s)|�c1(s2 + |s|p) for every(x, s) ∈ � × R. In
particular, we have

−F(x, s)�c1(s2 + |s|p)�c1(1 + Rp−2 + R�−2)s2 − c1|s|�
for every(x, s) ∈ �×R with |s|�R. Combining the above inequality with (3), the desired
inequality yields if one choosesc2 = min{c1, cR/R�} andc3 = c1(1+Rp−2 +R�−2). �

Remark 4.1. In particular, from Lemma 4.2 we observe that 2< �<p.
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5. The Palais–Smale condition

Proposition 5.1. If F : �×R → R verifies(F1)–(F3)thenJ� =H� +�K satisfies(PS)
for every�>0.

Proof. Let�>0 andc ∈ R be some fixed numbers and let{un} be a sequence fromH 1
0 (�)

such that

J�(un)= H�(un)+ �K(un) → c, (4)

H0
�(un; v − un)+ �K(v)− �K(un)� − 	n‖v − un‖0, ∀v ∈ H 1

0 (�), (5)

for a sequence{	n} in [0,∞) with 	n → 0. By (4) one concludes that the sequence{un}
belongs entirely toK. Settingv = 2un in (5), we obtain

H0
�(un; un)� − 	n‖un‖0.

Due to Proposition 4.1, from the above inequality we derive

‖un‖2
0 − �

∫
�
a(x)|un|q +

∫
�
F 0(x, un(x); −un(x))dx� − 	n‖un‖0. (6)

By (4) one has for largen ∈ N that

c + 1� 1

2
‖un‖2

0 − �
q

∫
�
a(x)|un|q −

∫
�
F(x, un(x))dx. (7)

Multiplying (6) by �−1 and adding this one to (7), by Hölder’s inequality we have for large
n ∈ N

c + 1 + 1

�
‖un‖0�

(
1

2
− 1

�

)
‖un‖2

0 − �
(

1

q
− 1

�

) ∫
�
a(x)|un|q

− 1

�

∫
�
[F 0(x, un(x); −un(x))+ �F(x, un(x))]dx

(F3)
�

(
1

2
− 1

�

)
‖un‖2

0 − �
(

1

q
− 1

�

)
‖a‖�/(�−q)‖un‖q�

�
(

1

2
− 1

�

)
‖un‖2

0 − �
(

1

q
− 1

�

)
‖a‖�/(�−q)kq� ‖un‖q0.

In the above inequalities we used Remark 4.1 and the hypothesisa ∈ L1(�) ∩ L∞(�)
thus, in particular,a ∈ L�/(�−q)(�). Sinceq <2< �, from the above estimation we derive
that the sequence{un} is bounded inK. Therefore,{un} is relatively compact inLp(�),
p ∈ (2,2∗). Up to a subsequence, we can suppose that

un → u weakly inH 1
0 (�), (8)

un → u strongly inL�(�), � ∈ (2,2∗). (9)
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SinceK is (weakly) closed thenu ∈ K. Settingv = u in (5), we have

〈un, u− un〉0 +
∫
�
F 0(x, un(x); un(x)− u(x))dx

−�
∫
�
a(x)|un|q−2un(u− un)� − 	n‖u− un‖0.

Therefore, in view of Proposition 3.2(ii) and Lemma 4.1(i) we derive

‖u− un‖2
0�〈u, u− un〉0 +

∫
�
F 0(x, un(x); un(x)− u(x))dx

− �
∫
�
a(x)|un|q−2un(u− un)+ 	n‖u− un‖0

�〈u, u− un〉0 + �‖a‖�/(�−q)‖un‖q−1
� ‖u− un‖� + 	n‖u− un‖0

+
∫
�

max{�n(x)(un(x)− u(x)) : �n(x) ∈ �F(x, un(x))}dx

�〈u, u− un〉0 + �‖a‖�/(�−q)‖un‖q−1
� ‖u− un‖� + 	n‖u− un‖0

+ 	‖un‖0‖un − u‖0 + c(	)‖un‖p−1
p ‖un − u‖p,

where	>0 is arbitrary small. Taking into account relations (8) and (9), the facts that
�, p ∈ (2,2∗), the arbitrariness of	>0 and	n → 0+, one has that{un} converges strongly
to u in H 1

0 (�). This completes the proof.�

6. Mountain Pass geometry ofJ� = H� + �K; the first solution of (P�)

Proposition 6.1. If F : � × R → R verifies(F1)–(F4)then there exists a�0>0 such that
for every� ∈ (0, �0) the following assertions are true:

(i) there exist constants��>0 and
�>0 such thatJ�(u)��� for all ‖u‖0 = 
�,
(ii) there existse� ∈ H 1

0 (�) with ‖e�‖0>
� andJ�(e�)�0.

Proof. (i) Due to Lemma 4.1(ii), for every	>0 there existsc(	)>0 such thatF(u)�	
‖u‖2

0 + c(	)‖u‖pp for everyu ∈ H 1
0 (�). It suffices to restrict our attention to elementsu

which belong toK; otherwiseJ�(u) will be +∞, i.e. (i) holds trivially. Fix	0 ∈ (0, 1
2).

One has

J�(u)�
(

1

2
− 	0

)
‖u‖2

0 − kppc(	0)‖u‖p0 − �kqp
q

‖a‖p/(p−q)‖u‖q0
= (A− B‖u‖p−2

0 − �C‖u‖q−2
0 )‖u‖2

0, (10)

whereA= (1
2 − 	0)>0,B = kppc(	0)>0 andC = kqp‖a‖p/(p−q)/q >0.

For every�>0, let us define a functiong� : (0,∞) → R by

g�(t)= A− Btp−2 − �Ctq−2.
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Clearly,g′
�(t�)=0 if and only ift�=(� 2−q

p−2
C
B
)1/(p−q). Moreover,g�(t�)=A−D�(p−2)/(p−q),

whereD =D(p, q, B,C)>0. Choosing�0>0 such thatg�0(t�0)>0, one clearly has for
every� ∈ (0, �0) that g�(t�)>0. Therefore, for every� ∈ (0, �0), setting
� = t� and
�� = g�(t�)t2� , the assertion from (i) holds true.

(ii) By Lemma 4.2 we haveF(u)�c2‖u‖�
� − c3‖u‖2

2 for everyu ∈ H 1
0 (�). Let us fix

u ∈ K. Then we have

J�(u)�
(

1

2
+ c3k2

2

)
‖u‖2

0 − c2‖u‖�
� + �

q
‖a‖�/(�−q)kq� ‖u‖q0. (11)

Fix arbitraryu0 ∈ K\{0}. Lettingu= su0 (s >0) in (11), we have thatJ�(su0) → −∞
ass → +∞, since�>2>q. Thus, for every� ∈ (0, �0), it is possible to sets = s� so
large that fore� = s�u0, we have‖e�‖0>
� andJ�(e�)�0. This ends the proof of the
proposition. �

We now turn to establish the existence of the first nontrivial solution of (P�). By Propo-
sition 5.1, the functionalJ� satisfies(PS) and clearlyJ�(0)=0 for every�>0. Let us fix
� ∈ (0, �0). By Proposition 6.1 it follows that there are constants��,
�>0 ande� ∈ H 1

0 (�)
such thatJ� fulfills the properties (i) and (ii) from Proposition 3.1. Therefore, the number
c1
� = inf �∈� supt∈[0,1] J�(�(t)), where� = {� ∈ C([0,1], H 1

0 (�)) : �(0)= 0, �(1)= e�},
is a critical value ofJ� with c1

����>0. It is clear that the critical pointu1
�∈H 1

0 (�)
which corresponds toc1

� cannot be trivial sinceJ�(u
1
�)=c1

�>0=J�(0). It remains to apply
Proposition 4.2 which concludes thatu1

� is actually an element ofK and it is a solution
of (P�).

7. Local minimization; the second solution of (P�)

Let us fix� ∈ (0, �0) arbitrary,�0 being from the previous section. By Proposition 6.1,
there exists
�>0 such that

inf‖u‖0=
�

J�(u)>0. (12)

On the other hand, sincea�0,a /≡ 0, there existsu0 ∈ K such that
∫
� a(x)|u0(x)|qdx >0.

Thus, fort >0 small one has

J�(tu0)� t2
(

1

2
+ c3k2

2

)
‖u0‖2

0 − c2t�‖u0‖�
� − �

q
tq

∫
�
a(x)|u0(x)|qdx <0.

Forr >0, let us denote byBr ={u ∈ H 1
0 (�) : ‖u‖0�r} andSr ={u ∈ H 1

0 (�) : ‖u‖0 = r}.
With these notations, relation (12) and the above inequality can be summarized as

c2
� = inf

u∈B
�

J�(u)<0< inf
u∈S
�

J�(u). (13)
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We point out thatc2
� is finite, due to (10). Moreover, we will show thatc2

� is another critical
point ofJ�. To this end, letn ∈ N\{0} such that

1

n
< inf
u∈S
�

J�(u)− inf
u∈B
�

J�(u). (14)

By Ekeland’s variational principle, applied to the lower semicontinuous functionalJ�|B
�
,

which is bounded below (see (13)), there isu�,n ∈ B
�
such that

J�(u�,n)� inf
u∈B
�

J�(u)+ 1

n
, (15)

J�(w)�J�(u�,n)− 1

n
‖w − u�,n‖0, ∀w ∈ B
�

. (16)

By (14) and (15) we have thatJ�(u�,n)< inf u∈S
�
J�(u); therefore‖u�,n‖0<
�.

Fix an elementv ∈ H 1
0 (�). It is possible to chooset >0 so small thatw= u�,n + t (v −

u�,n) ∈ B
�
. Putting this element into (16), using the convexity of�K and dividing by

t >0, one concludes

H�(u�,n + t (v − u�,n))− H�(u�,n)

t
+ �K(v)− �K(u�,n)� − 1

n
‖v − u�,n‖0.

Letting t → 0+, by the definition of the generalized directional derivative, we derive

H0
�(u�,n; v − u�,n)+ �K(v)− �K(u�,n)� − 1

n
‖v − u�,n‖0. (17)

By (13) and (15) we obtain that

J�(u�,n)= H�(u�,n)+ �K(u�,n) → c2
� (18)

asn → ∞. Sincev was arbitrary fixed in (17), the sequence{u�,n} fulfills (4) and (5),
respectively. Hence, it is possible to prove in a similar manner as in Proposition 5.1 that
{u�,n} contains a convergent subsequence; denote it again by{u�,n} and its limit point
by u2

�. It is clear thatu2
� belongs toB
�

. By the lower semicontinuity of�K we have

�K(u
2
�)� lim inf n→∞ �K(u�,n)while from Proposition 3.2(vi) one has lim supn→∞ H0

�
(u�,n; v − u�,n)�H0

�(u
2
�; v − u2

�). Combining these inequalities with (17) we have

H0
�(u

2
�; v − u2

�)+ �K(v)− �K(u
2
�)�0, ∀v ∈ H 1

0 (�),

i.e.u2
� is a critical point ofJ�. Moreover,

c2
�
(13)= inf

u∈B
�

J�(u)�J�(u
2
�)� lim inf

n→∞ J�(u�,n)
(18)= c2

�,

i.e.J�(u
2
�)= c2

�. Sincec2
�<0, it follows thatu2

� is not trivial. We apply again Proposition
4.2, concluding thatu2

� is a solution of(P�)which differs fromu1
�. This completes the proof

of Theorem 2.1.
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