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Abstract

In this paper a class of eigenvalue problems for hemivariational inequalities is studied which is
defined on domains of the type x R (w is a bounded open subset®f*, m > 1) and it involves
concave—convex nonlinearities. Under suitable conditions on the nonlinearities, two nontrivial so-
lutions are obtained which belong to a special closed convex com%(lb x R) whenever the
eigenvalues are of certain range. Our approach is variational, the main tool in our investigation is the
critical point theory developed by Motreanu and Panagiotopoulos [Minimax Theorems and Qualitative
Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht,
1999, Chapter 3].
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1. Introduction

Elliptic equations defined on domains of the foffe=cyx RN~ (wherew is a bounded
open set inR™ with smooth boundary; >1 and N—m >1) have been studied by
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many authors, motivated by various problems from mathematical physics (as the Klein-
Gordon or Schrédinger equations); without seeking completeness, we refer the readers to
[5,7,9,10,18,2Q]In these papers the approach is variational; an appropriate (smooth) energy
functional onH(}(Q) is defined whose critical points are (weak) solutions of the investi-
gated problem. Sinc€ is unbounded, the use of standard variational techniques become
delicate, due to the lack of compactness of the embedHﬂ’(g)) — LP(Q), p € [2,2%).
As usually, Z is the Sobolev critical exponent, i.e* 2 2N /(N — 2) whenN >3, and
2* = 400 whenN = 2.

First of all, we point out that there is a fundamental difference between problems where
N —m>2andN —m =1, respectively. Indeed, the subspace of axially symmetric functions
of H(}(Q), denoted further b)H&S(Q), regains the compactness of the embedding into

LP(Q)assoona® —m=>2andp € (2, 2%), seg[8, Theorem l]SinceH(}g(Q) is exactly

the fixed point set oiHl(Q) under the group actioid™ x O(N — m), it is enough to
find critical points for the functional which is restncteng)l (Q). Due to the principle
of symmetric criticality of Palais, these points will be critical points also for the initial
functional, thus solutions for the studied problem. Such points can be obtained by various
techniques (for example by minimizatign], minimax argumentf9,20]). We notice that
one can also meet some concrete problems which involve discontinuous nonlinearities on
this type of domains; in such cases a non-smooth approach is us¢ti? 633

On the other hand, wheN —m =1, i.e. 2 = o x R (with @ as above), the situation
changes radically. In spite of that one encounters important problems in this case (see for
instance2,4)), only a few existence results are known, §&&]. The difficulty lies in the
fact thatHol_S (o x R) cannot be embedded compactly iit(w x R) foranyp € [2, 2%),
thus the above described machinery does not work any more. However[Ldgiihiéoréme
[11.2] (see alsd8]) observed that defining the closed convex cone

A ={u € Hi(ow x R) : u is nonnegative,
y — u(x, y) is nonincreasing fox € w, y>0, and
y — u(x, y) is nondecreasing fat € w, y<0}, (K)

the bounded subsets of " are relatively compact ii.” (w x R) wheneverp € (2, 2%).
Burton[5] was the first who exploited in its entirety the above ‘compactness’; namely, by
means of a version of the Mountain Pass theorem (due to IHidfgfor an order-preserving
operator on Hilbert spaces), he was able to establish the existence of a nontrivial solution
for an elliptic equation on domains of the typex R. The main ingredient in his proof was
the symmetric decreasing rearrangement of the suitable functions, proving that th& cone
remains invariant under a carefully chosen nonlinear operator, which is an indispensable
hypothesis in the Hofer’s result.

The main goal of this paper is to give a new approach to treat elliptic (eigenvalue)
problems on domains of the tygeé = w x R. The genesis of our method can be found
in [17, Chapter 3]where Motreanu and Panagiotopoulos developed a new critical point
theory for locally Lipschitz functions which are perturbed by convex, proper and lower
semicontinuous functionals. Since the indicator function of a closed convex subset of a
vector space possesses exactly the latter properties, this approach arises in a natural manner
as it was already forecasted]it2].
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In order to formulate our problem, we shall consider a Carathéodory fungtiofw x
R) x R — R which is locally Lipschitz in the second variable such that

(F1) F(x,0) =0, and there exist; > 0 andp € (2, 2*) such that
1El<ea(s| + 15177, YE€dF(x,s), (x,5) € (wx R) x R

We denoted by F (x, s) the generalized gradient @f(x, -) at the points € R. Leta €
LY (o x R)yNL>®(w x R) witha>0,a # 0, andg € (1, 2). Keeping in mind the notation
" from (K), for A > 0, denote by(P,) the followingvariational-hemivaritional inequality
problem

Find u € ¢ such that

/ Vu(x)V(w(x) — u(x))dx + / FOCx, u(x); —v(x) + u(x))dx
oxR

oxR

>/ a() ()9 %u(x)(v(x) —u(x))dx, VYve A.
wxR
The expressio°(x, s; 1) stands for the generalized directional derivativéof, -) at the
points € R in the directiorr € R.
To investigate the existence of solutions(&%) we shall construct a functiongf; :
Hi(w x R) — R associated toP;) which is defined by

1 )
S ) = 5/ IVMIZ—/ F(x,u(x))dx — ﬁ/ a()ul? 4+ 4 (u),
oxR oxR qd JoxR

wherey - is the indicator function of the sef”. We will see that

Hyurs |Vu|2—/ Fx, u(x))dx — f/ a(o)lul?
2 JoxR wxR qd JoxR

is a locally Lipschitz function. Therefore/ ; = # ;, + - is a Motreanu—Panagiotopoulos
type functional (sefL 7, Chapter 3] If u — # (u) is of class¢* (for further comments, see
Remark 2.3) then the functiongl, =, + - is of Szulkin type, sef.9]. Proposition 4.2
asserts that the critical points gf; in the sense of Motreanu—Panagiotopoulos are solutions
of the (P,). Hence, it remains to study the critical points 8§, where we shall apply the
Mountain Pass theorem adopted to this kind of functional and a local minimization argument
as well, in order to obtain two nontrivial solutions @%,) for certain values ofl € R. It
is not clear under which conditions we are able to guarantee infinitely many solutions for
(P,), not even in the case whexf , is an even functional; unfortunately, the symmetric
version of the Mountain Pass theorem, H&& Corollary 3.6] cannot be applied tg , since
¥ is not even. We point out that although by means of the Motreanu—Panagiotopoulos
type functional several important questions have been solved (see for inft&rd&),
our result seems to give a genuinely new applicability of this critical point theory.

The paper is organized as follows. In the next section we give further hypotheges on
and we will formulate our main result. In Section 3 we recall some basic notions about
the Motreanu—Panagiotopoulos type functionals; in Section 4 some auxiliary results are
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collected; in Section 5 we verify the Palais—Smale condition; in Section 6 the first solution
of (P,) is constructed by means of the Mountain Pass theorem, while in the last section
we prove the existence of the second solutionR))) by means of the Ekeland variational
principle.

Notations

e O=wxR.

e The norm ofL*(Q) will be denoted by - ||, > 1.

° H&(Q) is the usual Sobolev space endowed with the inner pra@uet = [, VuVudx
and normj| - [[o=+/{-, -)o- Since has the cone property, we have the continuous embed-
ding H(}(Q) — L*(Q), a € [2,2*], that is, there existk, > 0 such that|u ||, <kq|lullo
forallu € H}(Q).

2. Main result

Besides (F1) we make the following assumptions on the nonline&rity
(F2)
) : OF (x, .
I|mO maxjc| : ¢ € OF (x, )} =0 uniformly for everyx € Q.
§—> S

(F3) There exists > 2 such that

VF(x,s)+ Fo(x, s;—s5)<0, V(x,s)e2xR.
(F4) There exist® > 0 such that
inf{F(x,s):(x,|s]) €wx[R,o0)}>0.
Remark 2.1. One can deduce that® .#" is a solution of (P) for every1 € R. Indeed, take

a sequencés, } which tends to 0 and,, € 0F (x, s;,). In view of (F2) one has necessarily
that

“mo max{|&|: & € OF (x,s5)} =0,

thus, in particulars, — 0 asn — +o0o. Due to the (weakly*-) closedness of the set-valued
mapdF (x, -), sed6, Proposition 2.1.5(b), p. 29\ve have Oc 0F (x, 0),i.e. FO(x, 0, w) >0
for every(x, w) € 2 x R.

In order to obtain nontrivial solutions of {|} we shall prove the following theorem which
constitutes the main result of this paper.

Theorem 2.1. Let F : Q x R — R be a function which satisfig§1)—(F4).Then there
existsig > 0 such that(P,) has at least two nontrivialdistinct solutionSu%, uf e A
whenevetl € (0, g).

Next we make some further remarks about the hypotheses we considered.
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Remark 2.2. (P,) is a problem which involves concave—convex nonlinearities. Indeed, the
numberq is supposed to be in the intervdl, 2) while in Lemma 4.2 we shall prove that
s — F(x, s) has a superquadratic growth at infinity, due to (F1)—(F4).

Remark 2.3. Let f : 2 x R — R be a measurable (not necessarily continuous) function
and suppose that there exists 0 such that for somg € (2, 2*) one has f (x, s)| <c(|s|+
|s|P~1) forevery(x, s) € Rx Q. DefineF : QxR — Rby F(x, s)=[; f(x, t)dt. ThenF

is a Carathéodory function which is locally Lipschitz in the second variable which satisfies
the growth condition from (F1). Indeed, singéx, -) € L5 .(R), by [17, Proposition 1.7]

we havedF (x, s) = [ f(x, s), f(x, s)] for every(x, s) € Q x R where

,s)= lim essinf f(x,r) and f(x,s)= lim esssu 1),
Sx,s5) ;m, essinf fx,0) fx,s) 5%0+|z_x|<(spf(x )

If f is continuous in the second variable, theR(x, s) = {f(x, s)} for every(x, s) €
2xR.Thus, hypothesis (F1) is the non-smooth reformulation of the classical subcritical con-
dition while (F2) reduces tg (x, s) =o(s) ass — 0, uniformly for everyx € Q. Moreover,

(F3) becomes the well-known Ambrosetti-Rabinowitz type inequalityx, s) <sf (x, s),
see[1]. In this continuous case, our problem;Jlean be handled by means of the Szulkin
type functional, segl9].

Now, we give some examples where the hypotheses of Theorem 2.1 hold true.

Example 2.1. F(x,s) = F(s) = |s|”, p € (2,2%). In this caseFO(x, s; —s) = —p|s|P.
One can choose= p.

Example 2.2. F(x,s)=F(s) =—s3/3if s <0, andF (x, s) = F(s) =s3In(2+s) if s >0.
One can choose arbitragye (2, 2*) andv € (2, 3] in (F1) and (F3), respectively.

Example 2.3. Letag=0, anda =k 2 for k > 1. Let us consideF (x, s) = F (s) =|s|3/3+
S _oaku? —k?)/2 whenls| € [n,n + 1), n € N. This function is locally Lipschitz; the
hypotheses of Theorem 2.1 are verified as soop as3, v =5/2 andN < {2, 3,4, 5}.
Notice that it is enough to verify (F3) only for positive numbers, siRde even and thus
FO(s; —s) = FO(—s; s) for everys € R.

3. Motreanu—Panagiotopoulos type functionals

Let (X, | - |I) be a real Banach space aid its topological dual. A functiork : X —
R is calledlocally Lipschitzif each pointu € X possesses a neighborhood, such
that|h(u1) — h(u2)| < L|luy — u2| for all ug, up € A", for a constant. > 0 depending
on ./",. The generalized directional derivativef h at the pointu € X in the direction
zeXis

h(w +tz) — h(w)

hO(u; z) = lim sup .

w—u,t—0t
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Thegeneralized gradientf hatu € X is defined by
Oh(u) = (x* € X*: (x*, 2)x <h%(u; 2), ¥z € X},

which is a nonempty, convex and*-compact subset ok*, where(-, -)x is the duality
pairing betweerk* andX.

Let # = h 4+, with h : X — R locally Lipschitz andyy : X — (—o0, +00]
convex, proper (i.e.4y # +o00), and lower semicontinuous? is called aMotreanu—
Panagioutopoulos typiinctional, se¢17, Chapter 3]

Definition 3.1 (Motreanu and Panagiotopould&7, Definition 3.1). An elementt € X
is said to be a&ritical point of ¥ = h + i, if
hOu; v — u) + Y(v) — Y(u) =0, Vv € X.

In this case,# (u) is acritical value of.#.

Definition 3.2 (Motreanu and Panagiotopoul¢$7, Definition 3.2). The functionaly =
h + y is said tosatisfy the Palais—Smale condition at levet R (shortly, (PS),) if every
sequencéu, } in X satisfying.#(u,) — ¢ and

ho(un; v —u,)+ l//(U) - lp(“n)) —&llv—unll, VveX,

for a sequencé, } in [0, co) with ¢, — 0O, contains a convergent subsequencéPB).. is
verified for allc € R, .7 is said tosatisfy the Palais—Smale conditi¢shortly, PS.

The following version of the Mountain Pass theorem will be used in Section 6.

Proposition 3.1 (Motreanu and Panagiotopould47, Corollary 3.2)). Assume that the
functional # = h +  on the Banach space X is of Motreanu—Panagiotopoulos, type
satisfies théP9), .#(0) = 0 and

(i) there exist constants> 0 and p > 0 such thats (u) > o for all ||u| = p,
(ii) there existg € X with |le|| > p and.#(e) <O0.

Then the numbet = inf,c; supcg1;-# (7(t)), whereI' = {y € C([0,1], X) : y(0) =
0, 7(1) = e}, is a critical value of.s with ¢ > .

Below, we collected those basic properties of the generalized directional derivative and
gradient which will be used through the whole paper.

Proposition 3.2 (see Clarkg6])). Leth : X — R be a locally Lipschitz function. Then
we have

() (=m)°w; 2) =hOu; —2), Yu,z € X.
(i) hOu; z) = max{(x*, z)y : x* € Oh(u)}, Vu,z € X.
(i) Letj : X — R be a continuously differentiable function. Thén(u) = {j’ (1)},
7%(u; z) coincides with(j (), z) y and (h + NP 2) =hO®u; 2) + (' (), z)x forall
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u,z € X. Moreover d(h + j)(u) =0h(u) + j' (u), 0(hj)(u) C j(u)Oh(u)+h(u);' (u)
ando(Ah)(u) = A0h(u) forall u € X and/ € R.

(iv) (Lebourg’s mean value theorergt u andv two points inX. Then there exists a point
w in the open segment betweeandv, andx} € 0h(w) such that

h(u) —h(v) = (x}, u —v)x.

(v) (Second Chain Rulelet Y be a Banach space and: Y — X a continuously
differentiable function. Theh o j is locally Lipschitz and

O(ho H(y) SO () o j'(y), VyeY.

(vi) The function(u, z) — h%u; z) is upper semicontinuous

4. Auxiliary results

Define# : H}(Q) — R by
F(u) = / F(x,u(x))dx. Q)
Q

Proposition 4.1. Let F : Q x R — R be a locally Lipschitz function which satisfi@sl).
ThenZ (from (1)) is well-defined and it is locally Lipschitz. Moreoyer

ﬁo(u;w)gf FO(x, u(x); w(x))dx, Vu,w € H}Q). 2)
Q

Since the proof of the above lemma is similar to thafl®, Lemma 4.2]we shall omit
it.

By standard arguments we have that the functiodalsA; : H&(Q) — R, defined by
A1(uw)=|u ||S andAz(u):fQ a(x)|u|dx are of clas€™ with derivativeg A’ (u), U>H01(Q) =
2(u, v)gand(A5(u), v)Hol(Q) =q fQ a(x)|u|9%uvdx, respectively. Therefore, due to Propo-
sition 4.1 the functional

1 )
A 30 = Sl - ;I/Qamw _ 7

on Hol(Q) is locally Lipschitz. On the other hand, the indicator function of thesgei.e.

w_()_{o if uex,
A= Hoo ifug¢gA,

is convex, proper, and lower semicontinuous. In conclusign,= #, + y, is a
Motreanu—Panagiotopoulos type functional. Moreover, one easily obtain the following:

Proposition 4.2. Fix 4 > 0 arbitrary. Every critical pointu € H(}(Q) of 7, =H,+ Y 4
is a solution of(P;).
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Proof. Sinceu € Hol(Q) is a critical pointof ¢, = 2, + -, one has
%20{; v—u) + Yy () — )20, Vve H&(Q).

We have immediately thatbelongs to#". Otherwise, we would hawg ,- (1) =+o0 which

led us to a contradiction, letting for instance= 0 € ¢ in the above inequality. Now, we
fix v € 2 arbitrary. By using relation (2) and the properties (i) and (iii) from Proposition
3.2, we obtain the desired inequalityl]

Lemma 4.1 (Kristaly [12, Lemma 4.1). If F : 2 x R — R satisfieqF1) and (F2), for
everye > 0 there existg (¢) > 0 such that

() 1€1<els| + c(e)|s|P~L, VE € OF (x, 5), (x,5) € Q x R.
(i) |F(x,s)|<es2+c(e)]s|?, V(x,s) € Q x R.

Lemma4.2.If F : @ x R — R satisfiesF1), (F3)and (F4) then there existz, c3 >0
such that

F(x,s)>cals|” —c3s?, V(x,s) € QxR.
Proof. First, for arbitrary fixedx, u) € Q x R we consider the functiog : (0, +00) — R
defined by

gty =t""F(x, tu).

Clearly,g is a locally Lipschitz function and by the properties (iii) and (v) of Proposition
3.2 we have

0g(t) € —vi " "YF(x, tu) + t "udF (x, tu), t > 0.

Let s > 1. By Lebourg’s mean value theorem, there exist t(x,u) € (1,7) andw, =
w(x, u) € 0g(t) suchthaig(r) — g(1) =w.(t — 1). Therefore, there exists =&, (x, u) €
OF (x, tu) such thatw, = —vt™""1F (x, tu) + t"ué, and by Proposition 3.2(ii)

g —g()> — v " I vF(x, ) + FOx, tu; —tu)](t — 1).

By (F3)onehag(r) >g(1),i.e.F(x,tu) >t"F(x,u), foreveryt > 1. Letcg=inf{F (x, s) :
(x,]s]) € o x [R, 00)}, which is a strictly positive number, due to (F4). Combining the
above facts we derive

F(x,s)>%|s|", V(x,s) € @ x R with |s| > R. 3)
On the other hand, by (F1) we hap@(x, s)| <c1(s? + |s|?) for every(x, s) € Q x R. In
particular, we have

—F(x,5)<c1(s® + [s|") <11+ RP 72 + R'7?)s% — cqs|”
for every(x, s) € Q x R with |s| < R. Combining the above inequality with (3), the desired
inequality yields if one chooses = min{c1, cg/R'} andez =c1(1+ RP 2+ R'2). O

Remark 4.1. In particular, from Lemma 4.2 we observe that 2 < p.
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5. The Palais—Smale condition

Proposition 5.1. If F : @ x R — Rverifies(F1)-(F3)then ¢, =)+ , satisfieqPS
for everyA > 0.

Proof. LetA> 0andc € R be some fixed numbers and {a},} be a sequence fromol(Q)
such that

Folup) =, (un) + Vo (up) = c, (4)
A v — Un) + Y (V) = Yoy (un) = — Enllv — unllo, Yo € HH(Q), (5)

for a sequencée,} in [0, co) with ¢, — 0. By (4) one concludes that the sequeficg
belongs entirely to#". Settingv = 2u,, in (5), we obtain

%g(un; up) 2 — &enllunllo.
Due to Proposition 4.1, from the above inequality we derive

lutn I — i/ga(x)lunlq +fQF0(x, U (x); —un(X))dx = — &, llunllo. (6)

By (4) one has for large € N that
1 2 }v
C+12_”un”0_ - a(x)|u,|? — F(x, uy(x))dx. (7)
2 qJa Q

Multiplying (6) by v~ and adding this one to (7), by Hélder’s inequality we have for large
neN

1 1 1 > (1 1 q
c+ 14+ —llugllo= |5 — - ”Mn”O_/L - — = a(x)|uy|
\J 2 v q Vv/)Jo

1 0
-2 fg LFOCr, 1t (); —itn () + VE(x, 1t () Idx

(Lot llunllg — 2 t 1 llall lla |1
Z\275% Unllg q v Allv/(v—g) [1Unlly

1 1 > (1 1 g g
= 5_; ||Mn||0_/L 5_; ||a||v/(v—q)kv||un||0-

In the above inequalities we used Remark 4.1 and the hypothesid.}(Q) N L®(Q)
thus, in particularg € L/0~9(Q). Sinceg < 2 < v, from the above estimation we derive
that the sequencie:,,} is bounded in#". Therefore {u,} is relatively compact ir.” (£2),

p € (2,2%). Up to a subsequence, we can suppose that

u, — u  weakly in H}(Q), (8)

u, — u strongly inL#(Q), pe (2,2%. 9)
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Since 7" is (weakly) closed then € 2#". Settingv = u in (5), we have

(U, 1t — p)g + / FOCx, 1y (x); 1y (x) — u(x))dx
Q

b —2 .
—A/a<x>|un|q (1t — 1) > — 1t — tn o
Q

Therefore, in view of Proposition 3.2(ii) and Lemma 4.1(i) we derive

||u—un||5<<u,u—un>o+/ FOCx, up (x); 1y (x) — u(x))dx
Q

- A/ a () |un | 2un 4 — un) + enllu — unllo
Q
<ty — tun)g + Alallyyog Nl = nlly + enllu — o
+ /Q max{&, (x) (u, (x) — u(x)) : ,(x) € OF (x, uy(x))}dx

-1
<y u = un)o + Allallyyo—g ln I8N = e lly + &nllue = unllo

-1
+ éllunllollun —ullo +c@llunlp “lun —ullp,

wheree > 0 is arbitrary small. Taking into account relations (8) and (9), the facts that
v, p € (2, 2*), the arbitrariness af > 0 andg,, — 0T, one has thafiu,,} converges strongly
touin H(}(Q). This completes the proof.[]

6. Mountain Pass geometry of#; = ) + ¥ ; the first solution of (P,)

Proposition 6.1. If F : @ x R — R verifies(F1)—(F4)then there exists & > 0 such that
for every. € (0, 4o) the following assertions are true

(i) there exist constants, > 0andp; > 0 such that# () > o, for all |lullo=p;,
(ii) there existg,; € H3(Q) with |le;]lo> p; and 7 ;(e;) <O.

Proof. (i) Due to Lemma 4.1(ii), for every > 0 there existg(¢) > 0 such that# (1) <e
||u||(2) + c(.s)||u||§ for everyu € Hol(Q). It suffices to restrict our attention to elements
which belong ta#"; otherwise ¢ ; (u) will be +o0, i.e. (i) holds trivially. Fixeg € (O, %).
One has

1 k4
I = (5 - so> lullg — khe(eo) lullf — 7”||a||p/<p_q>||u||g

= (A — BllullZ™% = AC[ull& ) [ul3, (10)

whereA = (3 — ¢0) > 0, B = khc(e0) > 0 andC =k} llall py(p—g)/q > O.
For everyl > 0, let us define a functiop; : (0, c0) — R by

g, ()=A— BtP=? — jCr972.
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Clearly,g’,(;)=0ifand only ift;y:()vlzj;}2 E)Y(r=0) Moreoverg, (1;)=A—D)P~2/ =D,
whereD = D(p, ¢, B, C) > 0. Choosing/p > 0 such thag;,(z;,) > 0, one clearly has for
every . € (0, Ao) thatg,(r;) > 0. Therefore, for every. € (0, 4g), settingp, = ¢, and
oy = gi(t,l)tf, the assertion from (i) holds true.

(if) By Lemma 4.2 we haveZ (u) > collu|l}, — c3||u||§ for everyu € Hol(Q). Let us fix
u € A . Then we have

1 A
)< (5 + c3k§> lulld — callull’ + gnauv/(v_q)kt? llullg. (11)

Fix arbitraryug € #"\{0}. Lettingu = sug (s > 0) in (11), we have thay/ ; (sug) — —oo
ass — o0, sincev> 2> q. Thus, for everyl € (0, 4p), it is possible to set = s, so
large that fore, = s,ug, we have|e;|o > p; and_#,(e;) <0. This ends the proof of the
proposition. [J

We now turn to establish the existence of the first nontrivial solution gf @y Propo-
sition 5.1, the functional/ ; satisfiegPS and clearly # ;(0) = 0 for every/ > 0. Let us fix
A € (0, Ap). By Proposition 6.1 it follows that there are constantsp, > 0 ande; € Hol(Q)
such thaty#; fulfills the properties (i) and (ii) from Proposition 3.1. Therefore, the number
ct =inf,er supepo.qy £ (7(1)), wherel’ = {y € C([0, 1], Hz(Q)) : 7(0) =0, 7(1) = ¢},
is a critical value of #; with ¢} >, > 0. It is clear that the critical poink}e Hg ()
which corresponds te; cannot be trivial sincg/ ; (u?)=c;>0=¢,(0). It remains to apply
Proposition 4.2 which concludes tha} is actually an element o#” and it is a solution

of (Py).

7. Local minimization; the second solution of (R)

Let us fixA € (0, o) arbitrary, o being from the previous section. By Proposition 6.1,
there existp,; > 0 such that

inf  #,@u)>0. (12)

lullo=p;

Onthe other hand, sinee>0,a # 0, there existag € % such thagfga(x)|uo(x)|‘1dx > 0.
Thus, forr > 0 small one has

1 , 2
7 5 (tug) <12 (5 + cskﬁ) luolld — cot” lluoll} — Z,’q /Q a(x)|uop(x)|?dx < 0.

Forr >0, letus denote by, = {u € H}(Q) : |lullo<r}andS, ={u € H}(Q) : |ullo=r}.
With these notations, relation (12) and the above inequality can be summarized as

2= inf 7w <0< inf 7;(). (13)
uEBp)V ueSp/l
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We point out thatf is finite, due to (10). Moreover, we will show thétis another critical
point of # . To this end, lez € N\{0} such that

}< inf 7,(w)— inf _7,(u). (14)
ueSy, ueB,,

n

By Ekeland’s variational principle, applied to the lower semicontinuous functMagL( ,
which is bounded below (see (13)), therajs, € B,, such that ”

1
Sy )< inf 7))+ =, (15)
uEB/,/.V n

1
Fow)= 7 5(u; ) — ;Ilw —uj,llo, Yw e By,. (16)

By (14) and (15) we have thgt ; (1, ,,) < infuesp; S (u); thereforelju, ,llo < p;.

Fix an element € H&(Q). It is possible to choose> 0 so small thatv =u; , +1(v —
u;n) € Bp,. Putting this element into (16), using the convexityjof- and dividing by
t >0, one concludes

H )y +10—u;,) =AW,
t

1
TV ) =Yy (u;,)> — v —u;.0l0-

Lettingr — O™, by the definition of the generalized directional derivative, we derive

1
%g(”ii,n; v— u).,n) + lp;{/(l)) - l//,%('(ul,n) = — ;”U —U)n llo. (17)
By (13) and (15) we obtain that

T g ) =H ) + Yy ,) — c2 (18)

asn — oo. Sincev was arbitrary fixed in (17), the sequengsg, ,} fulfills (4) and (5),
respectively. Hence, it is possible to prove in a similar manner as in Proposition 5.1 that
{u,,) contains a convergent subsequence; denote it agaim by} and its limit point
by uf It is clear thatuf belongs toB,,. By the lower semicontinuity ofy ,» we have

wf(uﬁ) < liminf,_, o0 Y- (1 ,) while from Proposition 3.2(vi) one has lim sup J/S
(.03 v — uy,) < A9W2; v — u?). Combining these inequalities with (17) we have

HOWs v —ud) + Yy (v) — Y@ =0, Yve Hy(Q),
i.e. u% is a critical point of # ;. Moreover,

1 . . . 1
2B inf g0< g0d<liminf 70,23
ueBp/_‘ n—00 ’

i.e. 7, (u?) =c?. Sincec? <0, it follows thatu? is not trivial. We apply again Proposition
4.2, concluding thatf is a solution ofP,) which differs fromuﬁ. This completes the proof
of Theorem 2.1.
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