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Abstract In this paper we study the multiplicity of solutions of the quasilinear elliptic system

−∆pu = λFu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (Sλ)

where Ω is a strip-like domain and λ > 0 is a parameter. Under some growth conditions on F , we
guarantee the existence of an open interval Λ ⊂ (0, ∞) such that for every λ ∈ Λ, the system (Sλ) has at
least two distinct, non-trivial solutions. The proof is based on an abstract critical-point result of Ricceri
and on the principle of symmetric criticality.
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1. Introduction

In recent years there has been increasing interest in the study of quasilinear elliptic
systems of the form

−∆pu = Fu(x, u, v) in Ω,

−∆qv = Fv(x, u, v) in Ω,

}
(S)

where Ω is a smooth domain in R
N , F ∈ C1(Ω×R

2, R); Fz designates the partial deriva- ‘denotes’?

tive of F with respect to z, and ∆α is the α-Laplacian operator ∆αu = div(|∇u|α−2∇u).
We refer to the works of Boccardo and de Figueiredo [4], Felmer, Manásevich and
de Thélin [12], de Figueiredo [8], and de Nápoli and Mariani [9]. In these works the
approach is variational, the boundedness of the domain Ω is assumed, while (S) is sub- Changes to

sentence OK?
jected to the standard zero Dirichlet boundary conditions. Usually, it is considered to be Words added – OK?

a functional (denote it by H) on W 1,p
0 (Ω) × W 1,q

0 (Ω) whose critical points are the weak
solutions of (S). Various growth conditions on F are required in order to guarantee non-
zero critical points of H. One of them is the celebrated Ambrosetti–Rabinowitz-type
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2 A. Kristály

condition, adapted to the above-mentioned problem (S) (see, for example, [4, p. 312]),
which asserts that H satisfies the Palais–Smale or Cerami compactness condition. This
condition implies, in particular, some sort of super-linearity of F .

In this paper we study the eigenvalue problem related to (S), namely,

−∆pu = λFu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (Sλ)

where λ > 0 is a parameter, Ω is a strip-like domain, i.e. Ω = ω ×R
l, ω being a bounded

open subset of R
m with smooth boundary and m � 1, l � 2, 1 < p, q < m + l. On the

other hand, we will treat the case when F is sub-p, q-linear (see (F4) below).
The motivation to investigate elliptic eigenvalue problems on strip-like domains arises

from mathematical physics (see, for example, [1,2]). The mathematical development of
these kinds of problem (in the scalar case) was initiated by Esteban [10]; for further
related works we refer the reader to [13], [14], [11] and [20]. Recently, Carrião and
Miyagaki [7] guaranteed the existence of at least one positive non-trivial solution of a
related problem to (S) (namely, p = q) on strip-like domains and on domains which are
situated between to infinite cylinders. They assumed that the nonlinear term F has some ‘two’? Otherwise,

clarify sentence?
sort of homogeneity and, in addition, the right-hand side of (S) is perturbed by a gradient-
type derivative of a p∗-homogeneous term (p∗ is the critical exponent). Their approach
is based on a suitable version of the concentration compactness principle. Although we
do not treat the critical case in the present paper, we allow p �= q and we do not assume
any homogeneity property on F .

The main result of this paper guarantees the existence of an open interval Λ ⊂ (0,∞)
such that for every λ ∈ Λ, the system (Sλ) has at least two distinct, non-trivial weak solu-
tions (ui

λ, vi
λ), i ∈ {1, 2}. Moreover, ui

λ, vi
λ are axially symmetric functions and the fami-

lies {u1
λ, u2

λ}λ∈Λ and {v1
λ, v2

λ}λ∈Λ are uniformly bounded with respect to the W 1,p
0 (Ω)- and

W 1,q
0 (Ω)-norms, respectively. The proof is based on a recent abstract critical-point result

of Ricceri [18] and on the well-known principle of symmetric criticality of Palais [17].
The paper is organized as follows. In § 2 we will give the hypotheses on F and the

statement of the main result (Theorem 2.2). Here, we also include a simple example,
illustrating the applicability of our theorem. The proof of Theorem 2.2 is given in § 3.

2. The main result

Let Ω be a strip-like domain, i.e. Ω = ω × R
l, ω is a bounded open subset of R

m with
smooth boundary and m � 1, l � 2, 1 < p, q < N = m + l. Denoting by α∗ the Sobolev
critical exponent, i.e. α∗ = αN/(N −α) (α ∈ {p, q}), we require the following hypotheses
on the nonlinear term F .

(F1) F : Ω × R
2 → R is a continuous function, (s, t) �→ F (x, s, t) is of class C1 and

F (x, 0, 0) = 0 for every x ∈ Ω.
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(F2) There exist c1 > 0 and r ∈ (p, p∗), s ∈ (q, q∗) such that

|Fu(x, u, v)| � c1(|u|p−1 + |v|(p−1)q/p + |u|r−1), (2.1)

|Fv(x, u, v)| � c1(|v|q−1 + |u|(q−1)p/q + |v|s−1) (2.2)

for every x ∈ Ω and (u, v) ∈ R
2.

The space W 1,α
0 (Ω) can be endowed with the norm

‖u‖1,α =
(∫

Ω

|∇u|α
)1/α

, α ∈ {p, q},

and for β ∈ [α, α∗] we have the Sobolev embeddings W 1,α
0 (Ω) ↪→ Lβ(Ω). In view of (F1)

and (F2), the energy functional H : W 1,p
0 (Ω) × W 1,q

0 (Ω) × [0,∞) → R,

H(u, v, λ) =
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q − λ

∫
Ω

F (x, u, v) dx,

is well defined and it is of class C1. One readily has that for λ > 0 fixed, the critical
points of H(· , · , λ) are exactly the weak solutions of (Sλ).

Taking into account the unboundedness of Ω (which causes, among other things, the
non-compactness of the Sobolev embeddings W 1,α

0 (Ω) ↪→ Lβ(Ω), β ∈ [α, α∗], α ∈ {p, q}),
we construct a subspace of W 1,α

0 (Ω), α ∈ {p, q}, which can be embedded compactly in
Lβ(Ω), β ∈ (α, α∗). The compactness of this embedding will be useful in order to obtain
critical points for H(· , · , λ). This construction can be described as follows.

The action of the compact group G = idm ×O(l) on W 1,α
0 (Ω) is defined by Does ‘id’ denote

the identity here?

gu(x, y) = u(x, g−1
0 y)

for every (x, y) ∈ ω × R
l, g = idm ×g0 ∈ G and u ∈ W 1,α

0 (Ω), α ∈ {p, q}. It is clear that
the action G on W 1,α

0 (Ω) is isometric: that is,

‖gu‖1,α = ‖u‖1,α for every g ∈ G, u ∈ W 1,α
0 (Ω), α ∈ {p, q}. (2.3)

The space W 1,p
0 (Ω) × W 1,q

0 (Ω) will be endowed with the norm

‖(u, v)‖1,p,q = ‖u‖1,p + ‖v‖1,q,

while the group G acts on it by

g(u, v) = (gu, gv) for every g ∈ G, (u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω).

Let

Use ‘ �=’
instead of ‘not= ’
here and
below? OK
that dot has
been removed
after ‘not’ if
you want to
keep this
notation?

W 1,α
0,G(Ω) not= FixGW 1,α

0 (Ω) = {u ∈ W 1,α
0 (Ω) : gu = u for every g ∈ G}.
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Since l � 2, the embedding W 1,α
0,G(Ω) ↪→ Lβ(Ω) with β ∈ (α, α∗) is compact (see [15,

Théorème III.2] or [11]). One clearly has that

FixG(W 1,p
0 (Ω) × W 1,q

0 (Ω))

= {(u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) : g(u, v) = (u, v) for every g ∈ G}
= W 1,p

0,G(Ω) × W 1,q
0,G(Ω). (2.4)

For abbreviation, we introduce further the following notation: Wα = W 1,α
0 (Ω), Wα

G =
W 1,α

0,G(Ω) (α ∈ {p, q}), and W p,q = W 1,p
0 (Ω) × W 1,q

0 (Ω), W p,q
G = W 1,p

0,G(Ω) × W 1,q
0,G(Ω),

respectively.
We say that a function h : Ω → R is axially symmetric if h(x, y) = h(x, gy) for every

x ∈ ω, y ∈ R
l and g ∈ O(l). In particular, the elements of Wα

G are exactly the axially
symmetric functions of Wα.

On the nonlinear term we will consider the following further hypotheses. Clarify sentence?

(F3) lim
u,v→0

Fu(x, u, v)
|u|p−1 = lim

u,v→0

Fv(x, u, v)
|v|q−1 = 0 uniformly for every x ∈ Ω.

(F4) There exist p1 ∈ (0, p), q1 ∈ (0, q), µ ∈ [p, p∗], ν ∈ [q, q∗] and a ∈ Lµ/(µ−p1)(Ω),
b ∈ Lν/(ν−q1)(Ω), c ∈ L1(Ω) such that

F (x, u, v) � a(x)|u|p1 + b(x)|v|q1 + c(x)

for every x ∈ Ω and (u, v) ∈ R
2.

(F5) There exist (u0, v0) ∈ W p,q
G such that∫

Ω

F (x, u0(x), v0(x)) dx > 0.

Remark 2.1. Let us denote by HG(· , · , λ) the restriction of H(· , · , λ) to the space
W p,q

G . Then (F3) and (F4) imply that HG(· , · , λ) is bounded from below and it satisfies
the Palais–Smale condition for every λ > 0 (see § 3). Therefore, for every λ > 0 the
functional HG(· , · , λ) has a minimizer (uλ, vλ). Moreover, for large λ, (F5) forces that ‘ensures’?

HG(u0, v0, λ) < 0, hence HG(uλ, vλ, λ) < 0. The element (uλ, vλ) will be a critical point
not only of HG(· , · , λ) but also of H(· , · , λ), due to the principle of symmetric criticality. Opening

parenthesis added –
OK?On the other hand, (2.1) and (2.2) imply that Fu(x, 0, 0) = Fv(x, 0, 0) = 0. Therefore,

(0, 0) is a solution of (Sλ) and HG(0, 0, λ) = 0 for every λ > 0. This means, in particular,
that (uλ, vλ) �= (0, 0). But we are interested to obtain further information about the ‘keen’?

existence and behaviour of solutions of (Sλ), which requires a finer analysis. Actually, we
can formulate the following theorem which constitutes the main result of this paper.

Theorem 2.2. Let F : Ω × R
2 → R be a function which satisfies (F1)–(F5). If F

is axially symmetric in the first variable and ps = qr, then there exist an open interval
Λ ⊂ (0,∞) and σ > 0 such that for all λ ∈ Λ the system (Sλ) has at least two distinct,
non-trivial weak solutions (denote them by (ui

λ, vi
λ), i ∈ {1, 2}), the functions ui

λ, vi
λ are

axially symmetric, and ‖ui
λ‖1,p < σ, ‖vi

λ‖1,q < σ, i ∈ {1, 2}.
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Remark 2.3. Unlike to a bounded domain Ω where one clearly has Lγ(Ω) ⊂ Lµ(Ω) Clarify sentence?

whenever 1 � µ � γ � ∞, in our case, i.e. Ω = ω × R
l, this inclusion is no longer valid,

although it would be important in several estimations. The hypothesis ps = qr (p, q, r, s

from (F2)) is destined to compensate the unboundedness of the domain and it seems to Clarify sentence?

be indispensable in our arguments (see Lemma 3.4 and relations (3.7), (3.8)). However, if
in (Sλ) one has p = q, the above hypothesis disappears in the sense that, without loosing
the generality, we may take s = r.

Example 2.4. Let Ω = ω × R
2, where ω is a bounded open interval in R. Let γ :

Ω → R be a continuous, non-negative, not identically zero, axially symmetric function
with compact support in Ω. Then there exist an open interval Λ ⊂ (0,∞) and a number
σ > 0 such that for every λ ∈ Λ, the system

−∆3/2u = 5
2λγ(x)|u|1/2u cos(|u|5/2 + |v|3) in Ω,

−∆9/4v = 3λγ(x)|v|v cos(|u|5/2 + |v|3) in Ω,

u = v = 0 on ∂Ω

has at least two distinct, non-trivial weak solutions with the properties from Theorem 2.2.

Author: brace
removed – OK?

Indeed, let us choose

F (x, u, v) = γ(x) sin(|u|5/2 + |v|3), r = 11
4 , s = 33

8 .

(F1)–(F3) hold immediately. For (F4) we choose a = b = 0, c = γ. Since γ is an
axially symmetric function, supp γ will be an id×O(2)-invariant set, i.e. if (x, y) ∈ supp γ

then (x, gy) ∈ supp γ for every g ∈ O(2). Therefore, it is possible to fix an element
u0 ∈ W

1,3/2
0,id ×O(2)(Ω) such that u0(x) = (π/2)2/5 for every x ∈ supp γ. Choosing v0 = 0,

one has that∫
Ω

F (x, u0(x), v0(x)) dx =
∫

supp γ

γ(x) sin |u0(x)|5/2 dx =
∫

supp γ

γ(x) dx > 0.

The conclusion follows from Theorem 2.2.

3. Proof of Theorem 2.2

To prove Theorem 2.2, we will apply the following abstract critical-point result of Ricceri.

Theorem 3.1 (Theorem 3 in [18]). Let (X, ‖ · ‖) be a separable and reflexive real
Banach space, I ⊆ R an interval, and g : X × I → R a continuous function satisfying the
following conditions:

(i) for every x ∈ X, the function g(x, ·) is concave;

(ii) for every λ ∈ I, the function g(· , λ) is sequentially weakly lower semicontinuous
and continuously Gâteaux differentiable, satisfies the Palais–Smale condition and

lim
‖x‖→+∞

g(x, λ) = +∞;
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(iii) there exists a continuous concave function h : I → R such that

sup
λ∈I

inf
x∈X

(g(x, λ) + h(λ)) < inf
x∈X

sup
λ∈I

(g(x, λ) + h(λ)).

Then there is an open interval Λ ⊆ I and a number σ > 0 such that for each λ ∈ Λ, the
function g(· , λ) has at least three critical points in X having norm less than σ.

Remark 3.2. Theorem 3.1 is a very efficient tool in the investigation of elliptic eigen-
value problems. The reader can consult the recent papers of Averna and Salvati [3],
Bonnano [5], Marano and Motreanu [16] and Ricceri [19] for various extensions and
applications of the above result. However, to the best of my knowledge, Theorem 2.2 is
the first application of Ricceri’s result to non-scalar elliptic problems.

In the rest of this section, we suppose that all the assumptions of Theorem 2.2 are
fulfilled.

Lemma 3.3. For every ε > 0 there exists c(ε) > 0 such that

(i) |Fu(x, u, v)| � ε(|u|p−1 + |v|(p−1)q/p) + c(ε)(|u|r−1 + |v|(r−1)q/p),

(ii) |Fv(x, u, v)| � ε(|v|q−1 + |u|(q−1)p/q) + c(ε)(|v|s−1 + |u|(s−1)p/q),

(iii) |F (x, u, v)| � ε(|u|p + |v|(p−1)q/p|u| + |v|q + |u|(q−1)p/q|v|)
+ c(ε)(|u|r + |v|(r−1)q/p|u| + |v|s + |u|(s−1)p/q|v|)

for every x ∈ Ω and (u, v) ∈ R
2.

Proof. (i) Let ε > 0 be arbitrary. Let us prove the first inequality, the second one
being similar. From the first limit of (F3) we have in particular that

lim
u,v→0

Fu(x, u, v)
|u|p−1 + |v|(p−1)q/p

= 0.

Therefore, there exists δ(ε) > 0 such that if |u|p−1+|v|(p−1)q/p < δ(ε) then |Fu(x, u, v)| �
ε(|u|p−1 + |v|(p−1)q/p). If |u|p−1 + |v|(p−1)q/p � δ(ε) then (2.1) implies that

|Fu(x, u, v)| � c1[(|u|p−1 + |v|(p−1)q/p)(r−1)/(p−1)δ(ε)(p−r)/(p−1) + |u|r−1]

� c(ε)(|u|r−1 + |v|(r−1)q/p).

Combining the above inequalities, we obtain the desired relation. Part (iii) follows from
the mean value theorem, (i), (ii) and F (x, 0, 0) = 0. �

We define the function F : W p,q → R by

F(u, v) =
∫

Ω

F (x, u(x), v(x)) dx.
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Using the Sobolev embeddings, (F1) and (F2), one can prove in a standard way that F
is of class C1, its differential being

F ′(u, v)(w, y) =
∫

Ω

[Fu(x, u, v)w + Fv(x, u, v)y] dx (3.1)

for every u, w ∈ W p and v, y ∈ W q.
Below, let us denote by ‖ · ‖1,α,G the restriction of ‖ · ‖1,α to Wα

G , α ∈ {p, q}, and by
FG, HG(· , · , λ), ‖ · ‖1,p,q,G the restrictions of F , H(· , · , λ), ‖ · ‖1,p,q to W p,q

G , respectively.
The norm of Lβ(Ω) will be denoted by ‖ · ‖β , as usual.

Lemma 3.4. FG is a sequentially weakly continuous function on W p,q
G .

Proof. Suppose the contrary, i.e. let {(un, vn)} ⊂ W p,q
G be a sequence which converges

weakly to (u, v) ∈ W p,q
G and FG(un, vn) � FG(u, v). Therefore, there exists ε0 > 0 and

a subsequence of {(un, vn)} (denoting again by {(un, vn)}) such that Clarify sentence?

0 < ε0 � |FG(un, vn) − FG(u, v)| for every n ∈ N.

For some 0 < θn < 1 we have

0 < ε0 � |F ′
G(un + θn(u − un), vn + θn(v − vn))(un − u, vn − v)| (3.2)

for every n ∈ N. Let us denote by wn = un + θn(u − un) and yn = vn + θn(v − vn). Since ‘define’?

the embeddings W p
G ↪→ Lr(Ω) and W q

G ↪→ Ls(Ω) are compact, up to a subsequence,
{(un, vn)} converges strongly to (u, v) in Lr(Ω) × Ls(Ω). By (3.1), Lemma 3.3, Hölder’s
inequality and ps = qr one has

|F ′
G(wn, yn)(un − u, vn − v)|

�
∫

Ω

[|Fu(x, wn, yn)||un − u| + |Fv(x, wn, yn)||vn − v|] dx

� ε

∫
Ω

[(|wn|p−1 + |yn|(p−1)q/p)|un − u| + (|yn|q−1 + |wn|(q−1)p/q)|vn − v|] dx

+ c(ε)
∫

Ω

[(|wn|r−1 + |yn|(r−1)q/p)|un − u| + (|yn|s−1 + |wn|(s−1)p/q)|vn − v|] dx

� ε[(‖wn‖p−1
p + ‖yn‖(p−1)q/p

q )‖un − u‖p + (‖yn‖q−1
q + ‖wn‖(q−1)p/q

p )‖vn − v‖q]

+ c(ε)[(‖wn‖r−1
r + ‖yn‖(r−1)q/p

s )‖un − u‖r + (‖yn‖s−1
s + ‖wn‖(s−1)p/q

r )‖vn − v‖s].

Since {wn} and {yn} are bounded in W p
G ↪→ Lp(Ω) ∩ Lr(Ω) and W q

G ↪→ Lq(Ω) ∩ Ls(Ω),
respectively, while un → u and vn → v strongly in Lr(Ω) and Ls(Ω), respectively,
choosing ε > 0 small arbitrary, we obtain that F ′

G(wn, yn)(un − u, vn − v) → 0, as n → Clarify sentence?

∞. But this contradicts (3.2). �

It is clear that

HG(u, v, λ) =
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G − λFG(u, v)

for (u, v) ∈ W p,q
G . For a fixed λ � 0 we denote by H′

G(u, v, λ) the differential of HG(· , · , λ)
at (u, v) ∈ W p,q

G .
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Lemma 3.5. Let λ � 0 be fixed and let {(un, vn)} be a bounded sequence in W p,q
G

such that
‖H′

G(un, vn, λ)‖(W p,q
G )∗ → 0

as n → ∞. Then {(un, vn)} contains a strongly convergent subsequence in W p,q
G .

Proof. Up to a subsequence, we can assume that

(un, vn) → (u, v) weakly in W p,q
G , (3.3)

(un, vn) → (u, v) strongly in Lr(Ω) × Ls(Ω). (3.4)

On the other hand, we have

H′
G(un, vn, λ)(u − un, v − vn)

=
∫

Ω

|∇un|p−2∇un(∇u − ∇un)

+
∫

Ω

|∇vn|q−2∇vn(∇v − ∇vn) − λF ′
G(un, vn)(u − un, v − vn)

and

H′
G(u, v, λ)(un − u, vn − v)

=
∫

Ω

|∇u|p−2∇u(∇un − ∇u)

+
∫

Ω

|∇v|q−2∇v(∇vn − ∇v) − λF ′
G(u, v)(un − u, vn − v).

Adding these two relations, one has

an
not=

∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un − ∇u)

+
∫

Ω

(|∇vn|q−2∇vn − |∇v|q−2∇v)(∇vn − ∇v)

= −H′
G(un, vn, λ)(u − un, v − vn) − H′

G(u, v, λ)(un − u, vn − v)

− λF ′
G(un, vn)(u − un, v − vn) − λF ′

G(u, v)(un − u, vn − v).

Using (3.3) and (3.4), similar estimations as in Lemma 3.4 show that the last two terms
tends to 0 as n → ∞. Due to (3.3), the second terms tends to 0, while the inequality

|H′
G(un, vn, λ)(u − un, v − vn)| � ‖H′

G(un, vn, λ)‖(W p,q
G )∗‖(u − un, v − vn)‖1,p,q,G

and the assumption implies that the first term tends to 0 too. Thus,

lim
n→∞

an = 0. (3.5)

From the well-known inequality

|t − s|α �
{

(|t|α−2t − |s|α−2s)(t − s), if α � 2,

((|t|α−2t − |s|α−2s)(t − s))α/2(|t|α + |s|α)(2−α)/2, if 1 < α < 2,
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for all t, s ∈ R
N , and (3.5), we conclude that

lim
n→∞

∫
Ω

(|∇un − ∇u|p + |∇vn − ∇v|q) = 0,

hence, the sequence {(un, vn)} converges strongly to (u, v) in W p,q
G . �

Proof of Theorem 2.2 completed. We will show that the assumptions of Theo-
rem 3.1 are fulfilled with the following choice: X = W p,q

G , I = [0,∞) and g = HG.
Since the function λ �→ HG(u, v, λ) is affine, (i) is true.
Now, we fix λ � 0. It is clear that

W p,q
G � (u, v) �→ 1

p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G

is sequentially weakly lower semicontinuous (see [6, Proposition III.5]). Thus, from
Lemma 3.4 it follows that HG(· , · , λ) is also sequentially weakly lower semicontinuous. Word added – OK?

We first prove that
lim

‖(u,v)‖1,p,q,G→∞
HG(u, v, λ) = +∞. (3.6)

Indeed, from (F4) and Hölder’s inequalities, one has

HG(u, v, λ) � 1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G − λ

∫
Ω

[a(x)|u|p1 + b(x)|v|q1 + c(x)] dx

� 1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G − λ[‖a‖µ/(µ−p1)‖u‖p1
µ + ‖b‖ν/(ν−q1)‖v‖q1

ν + ‖c‖1].

Since W p
G ↪→ Lµ(Ω) and W q

G ↪→ Lν(Ω) are continuous, while p1 < p and q1 < q, relation
(3.6) yields immediately. To conclude (ii) completely from Theorem 3.1, we prove that Clarify sentence?

HG(· , · , λ) satisfies the Palais–Smale condition. To this end, let {(un, vn)} be a sequence
in W p,q

G such that supn→∞|HG(un, vn, λ)| < +∞ and limn→∞‖H′
G(un, vn, λ)‖(W p,q

G )∗ =
0. According to (3.6), {(un, vn)} must be bounded in W p,q

G . The conclusion follows now
by Lemma 3.5.

Now we deal with (iii). Let us define the function f : (0,∞) → R by

f(t) = sup
{

FG(u, v) :
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G � t

}
.

After an integration in Lemma 3.3 (iii), using the Young inequality, Sobolev embeddings
and the relation ps = qr, for an arbitrary ε > 0 there exists c(ε) > 0 such that

FG(u, v) � ε(‖u‖p
1,p,G + ‖v‖q

1,q,G) + c(ε)(‖u‖r
1,p,G + ‖v‖s

1,q,G) (3.7)

for every (u, v) ∈ W p,q
G . Since the function x �→ (ax + bx)1/x, x > 0 is non-increasing

(a, b � 0), using again ps = qr, one has that

‖u‖r
1,p,G + ‖v‖s

1,q,G � [‖u‖p
1,p,G + ‖v‖q

1,q,G]r/p. (3.8)
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Therefore,
f(t) � ε max{p, q}t + c(ε)(max{p, q}t)r/p, t > 0.

On the other hand, clearly f(t) � 0, t > 0. Taking into account the arbitrariness of ε > 0
and the fact that r > p, we conclude that

lim
t→0+

f(t)
t

= 0. (3.9)

By (F5) it is clear that (u0, v0) �= (0, 0) (note that FG(0, 0) = 0). Therefore, it is possible
to choose a number η such that

0 < η < FG(u0, v0)
[
1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G

]−1

.

Due to (3.9), there exists

t0 ∈
(

0,
1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G

)

such that f(t0) < ηt0. Thus,

f(t0) < FG(u0, v0)t0

[
1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G

]−1

.

Let ρ0 > 0 such that

f(t0) < ρ0 < FG(u0, v0)t0

[
1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G

]−1

. (3.10)

Define h : I = [0,∞) → R by h(λ) = ρ0λ. We prove that h fulfils the inequality (iii) from
Theorem 3.1.

Due to the choice of t0 and (3.10), one has

ρ0 < FG(u0, v0). (3.11)

The function

I � λ �→ inf
(u,v)∈W p,q

G

[
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G + λ(ρ0 − FG(u, v))
]

is clearly upper semicontinuous on I. Thanks to (3.11), we have

lim
λ→∞

inf
(u,v)∈W p,q

G

(HG(u, v, λ) + ρ0λ)

� lim
λ→∞

[
1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G + λ(ρ0 − FG(u0, v0))
]

= −∞.
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Thus we find an element λ̄ ∈ I such that

sup
λ∈I

inf
(u,v)∈W p,q

G

(HG(u, v, λ) + ρ0λ)

= inf
(u,v)∈W p,q

G

[
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G + λ̄(ρ0 − FG(u, v))
]
. (3.12)

Since f(t0) < ρ0, for all (u, v) ∈ W p,q
G such that

1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G � t0,

we have FG(u, v) < ρ0. Thus,

t0 � inf
{

1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G : FG(u, v) � ρ0

}
. (3.13)

On the other hand,

inf
(u,v)∈W p,q

G

sup
λ∈I

(HG(u, v, λ) + ρ0λ)

= inf
(u,v)∈W p,q

G

[
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G + sup
λ∈I

(λ(ρ0 − FG(u, v)))
]

= inf
{

1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G : FG(u, v) � ρ0

}
.

Thus, (3.13) is equivalent to Change OK?

t0 � inf
(u,v)∈W p,q

G

sup
λ∈I

(HG(u, v, λ) + ρ0λ). (3.14)

There are two distinct cases.

(I) If 0 � λ̄ < t0/ρ0, we have

inf
(u,v)∈W p,q

G

[
1
p
‖u‖p

1,p,G+
1
q
‖v‖q

1,q,G+λ̄(ρ0−FG(u, v))
]

� HG(0, 0, λ̄)+ρ0λ̄ = λ̄ρ0 < t0.

Combining the above inequality with (3.12) and (3.14), the desired relation from
Theorem 3.1 (iii) is obtained immediately. Change OK?

(II) If t0/ρ0 � λ̄, from (3.11) and (3.10) we obtain

inf
(u,v)∈W p,q

G

[
1
p
‖u‖p

1,p,G +
1
q
‖v‖q

1,q,G + λ̄(ρ0 − FG(u, v))
]

� 1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G + λ̄(ρ0 − FG(u0, v0))

� 1
p
‖u0‖p

1,p,G +
1
q
‖v0‖q

1,q,G +
t0
ρ0

(ρ0 − FG(u0, v0)) < t0.

The conclusion holds similarly as in the first case. Clarify sentence?

Author: does item
(II) end here?
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Thus, the hypotheses of Theorem 3.1 are fulfilled. This implies the existence of an
open interval Λ ⊂ [0,∞) and σ > 0 such that for all λ ∈ Λ the function HG(· , · , λ)
has at least three distinct critical points in W p,q

G (denote them by (ui
λ, vi

λ), i ∈ {1, 2, 3})
and ‖(ui

λ, vi
λ)‖1,p,q,G < σ. In particular, the functions ui

λ, vi
λ are axially symmetric, and

‖ui
λ‖1,p < σ, ‖vi

λ‖1,q < σ, i ∈ {1, 2, 3}.
Since F is axially symmetric in the first variable, thanks to (2.3), the function H(· , · , λ)

is G-invariant, i.e.
H(g(u, v), λ) = H(gu, gv, λ) = H(u, v, λ)

for every g ∈ G, (u, v) ∈ W p,q. Taking into account (2.4), i.e. FixGW p,q = W p,q
G , we

can apply the principle of symmetric criticality of Palais [17, Theorem 5.4], obtaining
that (ui

λ, vi
λ), i ∈ {1, 2, 3}, are also critical points of H(· , · , λ), hence, weak solutions of

(Sλ). Since one of them may be the trivial one, as we pointed out in Remark 2.1, we will
have at least two distinct, non-trivial solutions of (Sλ). This completely concludes the
proof. �
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