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Abstract. In this paper we study the multiplicity of solutions for a class of eigenvalue problems
for hemivariational inequalities in strip-like domains. The first result is based on a recent abstract
theorem of Marano and Motreanu, obtaining at least three distinct, axially symmetric solutions for
certain eigenvalues. In the second result, a version of the fountain theorem of Bartsch which involves
the nonsmooth Cerami compactness condition, provides not only infinitely many axially symmetric
solutions but also axially nonsymmetric solutions in certain dimensions. In both cases the principle
of symmetric criticality for locally Lipschitz functions plays a crucial role.
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1. Introduction

Let ω be a bounded open set in R
m with smooth boundary and let � = ω × R

N−m

be a strip-like domain; m � 1, N −m � 2. Let F : �× R → R be a Carathéodory
function which is locally Lipschitz in the second variable such that

(F1) F(x, 0) = 0, and there exist c1 > 0 and p ∈ ]2, 2∗[ such that

|ξ | � c1(|s| + |s|p−1)

for all s ∈ R, ξ ∈ ∂F (x, s) and a.e. x ∈ �.

We denoted by ∂F (x, s) the generalized gradient of F(x, ·) at the point s ∈ R,
while 2∗ = 2N(N − 2)−1 is the Sobolev critical exponent.

In this paper we study the following eigenvalue problem for hemivariational
inequalities. For λ > 0, denote by (EPHIλ): Find u ∈ H 1

0 (�) such that∫
�

∇u∇w dx + λ

∫
�

F 0(x, u(x);−w(x)) dx � 0 for all w ∈ H 1
0 (�).

� Supported by the EU Research Training Network HPRN-CT-1999-00118.
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The expression F 0(x, s; t) stands for the generalized directional derivative
of F(x, ·) at the point s ∈ R in the direction t ∈ R.

The motivation to study this type of problem comes from mathematical physics.
Indeed, one often encounters problems which can be formulated in terms of some
sort of variational inequalities which can be well analyzed in weak form (see
Duvaut and Lions [10]). On the other hand, motivated also by some mechani-
cal problems where certain nondifferentiable term perturbs the classical function,
Panagiotopoulos [25] developed a more realistic approach, the so-called theory of
hemivariational inequalities (see also the monographs [21–23]). The formulation
of (EPHIλ) is inspired by this theory. Moreover, if we particularize the form of F

(see Remark 3.2), then (EPHIλ) reduces to the following eigenvalue problem

−�u = λf (x, u) in �, u ∈ H 1
0 (�), (EPλ)

which is a simplified form of certain stationary waves in the nonlinear Klein–
Gordon or Schrödinger equations (see, for instance, Amick [1]). Under some re-
strictive conditions on the nonlinear term f , (EPλ) has been firstly studied by Este-
ban [11]. Further investigations, closely related to [11] can be found in
the papers of Burton [6], Fan and Zhao [13], Grossinho [14], Schindler [30],
Tersian [31].

Although related problems to (EPλ) have been extensively studied on bounded
domains (see, for instance, the papers of Raymond [26], Guo and Webb [15], and
references therein), in unbounded domains the problem is more delicate, due to
the lack of compactness in the Sobolev embeddings. Variational and/or topological
methods are combined with different technics to overcome this difficulty: approx-
imation by bounded sub-domains (see [11]); the use of weighted Sobolev spaces
in order to obtain compact embeddings (see [5]); the use of Sobolev spaces with
symmetric functions (see [11]); the use of an order-preserving operator on Hilbert
space (see [6]).

In order to solve (EPλ), Esteban [11] used a minimization procedure via axially
symmetric functions. The first purpose of this paper is to give a new approach
to treat eigenvalue problems on strip-like domains. This technic is based on the
recent critical-point result of Marano and Motreanu (see [20]) which will be com-
bined with the principle of symmetric criticality for locally Lipschitz functions
(see [17]), establishing for certain eigenvalues the existence of at least three dis-
tinct, axially symmetric solutions to (EPHIλ). Actually, the abstract result of [20]
is an extension of Theorem 1 from the paper [27] of Ricceri (see also [28]) to
the Motreanu–Panagiotopoulos type functionals (see [21, Chapter 3]). Marano and
Motreanu applied their abstract result to elliptic eigenvalue problems with highly
discontinuous nonlinearities on bounded domains. We mention that there are sev-
eral further papers dedicated to different applications of Ricceri’s result (see [29],
and the references cited there). However, as far as I know, the present paper gives
the first application of the Ricceri type results on unbounded domains.
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In the case of strip-like domains, the space of axially symmetric functions has
been the main tool in the investigations, due to its ‘good behavior’ concerning the
compact embeddings (note that N � m + 2, see [12]); this is the reason why many
authors used this space in their works (see [11, 13, 14, 31]). On the other hand, no
attention has been paid in the literature to the existence of axially nonsymmetric
solutions, even in the classical case (EPλ). Therefore, the study of existence of
axially nonsymmetric solutions for (EPHIλ) constitutes the second task of this
paper. A nonsmooth version of the fountain theorem of Bartsch [3] provides not
only infinitely many axially symmetric solutions but also axially nonsymmetric
solutions, when N = m + 4 or N � m + 6.

The paper is organized as follows. Since we will use some elements from the
theory of subdifferential calculus of Clarke [8], in Section 2 some basic facts about
locally Lipschitz functions are recalled. In Section 3 the statement of our main
theorems are given, including also some simple examples which illustrate their
applicability. In Section 4 some auxiliary results are collected while the next two
sections are devoted to the proofs of the main results.

2. Basic Notions

Let (X, ‖·‖) be a real Banach space and X∗ its topological dual. A function h: X →
R is called locally Lipschitz if each point u ∈ X possesses a neighborhood Nu such
that |h(u1) − h(u2)| � L‖u1 − u2‖ for all u1, u2 ∈ Nu, for a constant L > 0
depending on Nu. The generalized directional derivative of h at the point u ∈ X

in the direction z ∈ X is

h0(u; z) = lim sup
w→u, t→0+

h(w + tz) − h(w)

t
.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x∗ ∈ X∗ : 〈x∗, z〉X � h0(u; z) for all z ∈ X},
which is a nonempty, convex and w∗-compact subset of X∗, where 〈·, ·〉X is the
duality pairing between X∗ and X.

Now, we list some fundamental properties of the generalized directional deriv-
ative and gradient which will be used through the whole paper.

PROPOSITION 2.1 (see [8]). (i) (−h)0(u; z) = h0(u;−z) for all u, z ∈ X.

(ii) h0(u; z) = max{〈x∗, z〉X : x∗ ∈ ∂h(u)} for all u, z ∈ X.

(iii) Let j : X → R be a continuously differentiable function. Then ∂j (u) =
{j ′(u)}, j 0(u; z) coincides with 〈j ′(u), z〉X and (h + j)0(u; z) = h0(u; z) +
〈j ′(u), z〉X for all u, z ∈ X. Moreover, ∂(h + j)(u) = ∂h(u) + j ′(u), ∂(hj)(u) ⊆
j (u)∂h(u) + h(u)j ′(u) and ∂(λh)(u) = λ∂h(u) for all u ∈ X and λ ∈ R.

(iv) (Lebourg’s mean value theorem) Let u and v two points in X. Then there
exists a point w in the open segment between u and v, and x∗

w ∈ ∂h(w) such that

h(u) − h(v) = 〈x∗
w, u − v〉X.
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A point u ∈ X is a critical point of h if 0 ∈ ∂h(u), that is, h0(u;w) � 0
for all w ∈ X (see Chang [7]); c = h(u) is a critical value. We define mh(u) =
inf{‖x∗‖X : x∗ ∈ ∂h(u)} (we used the notation ‖x∗‖X instead of ‖x∗‖X∗). It is clear
that mh(u) is attained, since ∂h(u) is w∗-compact.

The function h satisfies the nonsmooth Palais–Smale condition at level c ∈ R

(shortly (PS)c), if every sequence {xn} ⊂ X such that h(xn) → c and mh(xn) → 0
contains a convergent subsequence in the norm of X (see [7]).

We say that h satisfies the nonsmooth Cerami condition at level c ∈ R (shortly
(C)c), if every sequence {xn} ⊂ X such that h(xn) → c and (1+‖xn‖)mh(xn) → 0
contains a convergent subsequence in the norm of X (see [16]).

3. Main Results and Examples

Throughout this paper, � will be a strip-like domain, that is � = ω×R
N−m, where

ω is a bounded open set in R
m with smooth boundary and m � 1, N − m � 2.

H 1
0 (�) is the usual Sobolev space endowed with the inner product 〈u, v〉0 =∫

�
∇u∇v dx and norm ‖ · ‖0 = √〈·, ·〉0, while the norm of Lα(�) will be de-

noted by ‖ · ‖α. Since � has the cone property, we have the continuous embedding
H 1

0 (�) ↪→ Lα(�), α ∈ [2, 2∗], that is, there exists kα > 0 such that ‖u‖α �
kα‖u‖0 for all u ∈ H 1

0 (�).

We say that a function h: � → R is axially symmetric, if h(x, y) = h(x, gy)

for all x ∈ ω, y ∈ R
N−m and g ∈ O(N − m). In particular, we denote by H 1

0,s(�)

the closed subspace of axially symmetric functions of H 1
0 (�). u ∈ H 1

0 (�) is called
axially nonsymmetric, if it is not axially symmetric.

For the first result, we make the following assumptions on the nonlinearity
term F.

(F2) lim
s→0

max{|ξ | : ξ ∈ ∂F (x, s)}
s

= 0 uniformly for a.e. x ∈ �.

(F3) There exist q ∈ ]0, 2[, ν ∈ [2, 2∗], α ∈ L
ν

ν−q (�) and β ∈ L1(�) such that

F(x, s) � α(x)|s|q + β(x)

for all s ∈ R and a.e. x ∈ �.

(F4) There exists u0 ∈ H 1
0,s(�) such that

∫
�

F(x, u0(x)) dx > 0.

THEOREM 3.1. Let F : � × R → R be a function which satisfies (F1)–(F4)
and F(·, s) is axially symmetric for all s ∈ R. Then there exist an open interval
�0 ⊂ [0, +∞[ and a number σ > 0 such that for every λ ∈ �0, (EPHIλ) has at
least three distinct solutions which are axially symmetric having ‖ · ‖0-norms less
than σ.

The following theorem can be considered as an extension of Bartsch and Wil-
lem’s result (see [4]) to the case of strip-like domains. We require the following
assumption on F.
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(F5) There exist ν � 1 and γ ∈ L∞(�) with essinfx∈�γ (x) = γ0 > 0 such that

2F(x, s) + F 0(x, s;−s) � −γ (x)|s|ν

for all s ∈ R and a.e. x ∈ �.

THEOREM 3.2. Let F : � × R → R be a function which satisfies (F1), (F2),
and (F5) for some ν > max{2, N(p − 2)/2}. If F is axially symmetric in the first
variable and even in the second variable then (EPHIλ) has infinitely many axially
symmetric solutions for every λ > 0. In addition, if N = m + 4 or N � m + 6,
(EPHIλ) has infinitely many axially nonsymmetric solutions.

Remark 3.1. The inequality from (F5) is a nonsmooth version of one introduced
by Costa and Magalhães [9]. Let us suppose for a moment that F is autonomous.
Note that (F5) is implied in many cases by the following condition (of Ambrosetti–
Rabinowitz type):

νF (s) + F 0(s;−s) � 0 for all s ∈ R, (1)

where ν > 2. Indeed, from (1) and Lebourg’s mean value theorem, applied to the
locally Lipschitz function g: ]0, +∞[ → R, g(t) = t−νF (tu) (with arbitrary fixed
u ∈ R) we obtain that t−νF (tu) � s−νF (su) for all t � s > 0. If we assume
in addition that lim infs→0

F(s)

|s|ν � a0 > 0, from the above relation (substituting

t = 1) we have for u 
= 0 that F(u) � lim infs→0+ F(su)

|su|ν |u|ν � a0|u|ν. So, 2F(u)+
F 0(u;−u) � (2 − ν)F (u) � −γ0|u|ν , where γ0 = a0(ν − 2) > 0.

Remark 3.2. Let f : � × R → R be a measurable (not necessarily continuous)
function and suppose that there exists c > 0 such that |f (x, s)| � c(|s| + |s|p−1)

for all s ∈ R and a.e. x ∈ �. Define F : � × R → R by F(x, s) = ∫ s

0 f (x, t) dt.

Then F is a Carathéodory function which is locally Lipschitz in the second variable
which satisfies the growth condition from (F1). Indeed, since f (x, ·) ∈ L∞

loc(R),
by [21, Proposition 1.7] we have ∂F (x, s) = [f (x, s), f (x, s)] for all s ∈ R

and a.e. x ∈ �, where f (x, s) = limδ→0+ essinf|t−s|<δf (x, t) and f (x, s) =
limδ→0+ esssup|t−s|<δf (x, t).

Moreover, if f is continuous in the second variable, then ∂F (x, s) = {f (x, s)}
for all s ∈ R and a.e. x ∈ �. Therefore, the inequality from (EPHIλ) takes the
form ∫

�

∇u∇w dx − λ

∫
�

f (x, u(x))w(x) dx = 0 for all w ∈ H 1
0 (�),

that is, u ∈ H 1
0 (�) is a weak solution of (EPλ) in the usual sense.

Remark 3.3. In view of Remark 3.2, under additional hypotheses on f , cor-
responding to (F2)–(F5), it is possible to state the smooth counterparts of Theo-
rems 3.1 and 3.2.



90 ALEXANDRU KRISTÁLY

In the final of this section, we give some examples.

EXAMPLE 3.1. Let p ∈ ]2, 2∗[ and a: � → R be a continuous, nonnegative,
not identically zero, axially symmetric function with compact support in �. Then
there exist an open interval �0 ⊂ [0, +∞[ and a number σ > 0 such that for every
λ ∈ �0, the problem

−�u = λa(x)|u|p−2u cos|u|p in �, u ∈ H 1
0 (�)

has at least three distinct, axially symmetric solutions which have norms less than σ.

Indeed, let us define F : � × R → R by F(x, s) = (1/p)a(x) sin|s|p. Clearly,
F(x, ·) is continuously differentiable and (F1)–(F2) hold immediately. For (F3) we
choose α(x) = β(x) = a(x)/p (x ∈ �), and any q ∈ ]0, 2[, ν ∈ [2, 2∗]. Since a

is an axially symmetric function, supp a will be an idm × O(N − m)-invariant set,
i.e., if (x, y) ∈ supp a then (x, gy) ∈ supp a for all g ∈ O(N − m). Therefore,
it is possible to fix an element u0 ∈ H 1

0,s(�) such that u0(x) = (π/2)1/p for all
x ∈ suppa. One has that∫

�

F(x, u0(x)) dx = 1

p

∫
supp a

a(x) sin|u0(x)|p dx = 1

p

∫
supp a

a(x) dx > 0.

The conclusion follows from Theorem 3.1 and Remark 3.2.

EXAMPLE 3.2. Let a: � → R be as in Example 3.1 and let F : � × R → R

defined by F(x, s) = a(x) min{s3, |s|q}, where q ∈ ]0, 2[ is a fixed number. The
conclusion of Theorem 3.1 holds in dimensions N ∈ {3, 4, 5}.

Indeed, we can verify (F1)–(F4), choosing p = 3, α = a, β = 0 and u0 as in
Example 3.1.

EXAMPLE 3.3. Let p ∈ ]2, 2∗[. Then, for all λ > 0, the problem

−�u = λ|u|p−2u in �, u ∈ H 1
0 (�),

has infinitely many axially symmetric solutions. Moreover, if N = m + 4 or N �
m + 6, the problem has infinitely many axially nonsymmetric solutions.

Indeed, consider the (continuously differentiable) function F(x, s) = F(s) =
|s|p, which verifies obviously the assumptions of Theorem 3.2 (choose ν = p).

EXAMPLE 3.4. We denote by �u� the nearest integer to u ∈ R, if u+ (1/2) /∈ Z;
otherwise we put �u� = u. Let N ∈ {3, 4, 5} and let F : �× R → R be defined by

F(x, s) = F(s) =
∫ s

0
�t |t |� dt + |s|3.

It is clear that F is a locally Lipschitz, even function. Due to the first part of
Remark 3.2, F verifies (F1) with the choice p = 3 while (F2) follows from
the fact that �t |t |� = 0 if t ∈ ] − 2−1/2, 2−1/2[. Since F is even (in particular,
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F 0(s;−s) = F 0(−s; s) for all s ∈ R), it is enough to very (F5) for s � 0. We
have that F(s) = s3 if s ∈ [0, a1], and F(s) = s3 + ns − ∑n

k=1

√
2k − 1/

√
2 if

s ∈ ]an, an+1], where an = (2n − 1)1/22−1/2, n ∈ N \ {0}. Moreover, F 0(s;−s) =
−3s3 − ns when s ∈ ]an, an+1[ while F 0(an;−an) = −3a3

n − (n − 1)an, since
∂F (an) = [3a2

n + n − 1, 3a2
n + n], n ∈ N \ {0}. Choosing γ (x) = γ0 = 1/3

and ν = 3, from the above expressions the required inequality yields. Therefore
(EPHIλ) has infinitely many axially symmetric solutions for every λ > 0. More-
over, if � = ω × R

4, where ω is an open bounded interval in R, then (EPHIλ) has
infinitely many axially nonsymmetric solutions for every λ > 0.

4. Some Auxiliary Results

LEMMA 4.1. If F : � × R → R satisfies (F1) and (F2), for every ε > 0 there
exists c(ε) > 0 such that

(i) |ξ | � ε|s| + c(ε)|s|p−1 for all s ∈ R, ξ ∈ ∂F (x, s) and a.e. x ∈ �.

(ii) |F(x, s)| � εs2 + c(ε)|s|p for all s ∈ R and a.e. x ∈ �.

Proof. (i) Let ε > 0. Condition (F2) implies that there exists a δ := δ(ε) > 0
such that |ξ | � ε|s| for |s| < δ, ξ ∈ ∂F (x, s) and a.e. x ∈ �. If |s| � δ, (F1)
implies that |ξ | � c1(|s|2−p + 1)|s|p−1 � c(δ)|s|p−1 for all ξ ∈ ∂F (x, s) and a.e.
x ∈ �. Combining the above relations, the required inequality yields.

(ii) We use Lebourg’s mean value theorem, obtaining |F(x, s)| = |F(x, s) −
F(x, 0)| = |ξθss| for some ξθs ∈ ∂F (x, θs) where θ ∈ ]0, 1[. Now, we apply (i). �

Define F : H 1
0 (�) → R by

F (u) =
∫

�

F(x, u(x)) dx.

The following result plays a crucial role in the study of (EPHIλ).

LEMMA 4.2. Let F : � × R → R be a locally Lipschitz function which satisfies
(F1). Then F is well-defined and it is locally Lipschitz. Moreover, let E be a closed
subspace of H 1

0 (�) and FE the restriction of F to E. Then

F 0
E(u;w) �

∫
�

F 0(x, u(x);w(x)) dx for all u, w ∈ E. (2)

Proof. Let us fix s1, s2 ∈ R arbitrary. By using Lebourg’s mean value theo-
rem, there exist θ ∈ ]0, 1[ and ξθ ∈ ∂F (x, θs1 + (1 − θ)s2) such that F(x, s1) −
F(x, s2) = ξθ (s1 − s2). By (F1) we conclude that

|F(x, s1) − F(x, s2)| � d|s1 − s2| · [|s1| + |s2| + |s1|p−1 + |s2|p−1] (3)
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for all s1, s2 ∈ R and a.e. x ∈ �, where d = d(c1, p) > 0. In particular, if
u ∈ H 1

0 (�), we obtain that

|F (u)|�
∫

�

|F(x, u(x))| dx

� d(‖u‖2
2 + ‖u‖p

p) � d(k2
2‖u‖2

0 + kp
p‖u‖p

0 ) < +∞,

that is, the function F is well-defined. Moreover, by (3), there exists d0 > 0 such
that for every u, v ∈ H 1

0 (�)

|F (u) − F (v)| � d0‖u − v‖0[‖u‖0 + ‖v‖0 + ‖u‖p−1
0 + ‖v‖p−1

0 ].
Therefore, F is a locally Lipschitz function on H 1

0 (�).

Let us fix u and w in E. Since F(x, ·) is continuous, F 0(x, u(x);w(x)) can be
expressed as the upper limit of (F (x, y + tw(x)) − F(x, y))/t , where
t → 0+ takes rational values and y → u(x) takes values in a countable dense
subset of R. Therefore, the map x �→ F 0(x, u(x);w(x)) is measurable as the
‘countable limsup’ of measurable functions of x. According to (F1) and Proposi-
tion 2.1(ii), the map x �→ F 0(x, u(x);w(x)) belongs to L1(�).

Since E is separable, there are functions un ∈ E and numbers tn → 0+ such
that un → u in E and

F 0
E(u;w) = lim

n→+∞
FE(un + tnw) − FE(un)

tn
,

and without loss of generality, we may assume that there exist h2 ∈ L2(�, R+)

and hp ∈ Lp(�, R+) such that |un(x)| � min{h2(x), hp(x)} and un(x) → u(x)

a.e. in �, as n → +∞.

We define gn: � → R ∪ {+∞} by

gn(x) = −F(x, un(x) + tnw(x)) − F(x, un(x))

tn
+

+ d|w(x)|[|un(x) + tnw(x)| +
+ |un(x)| + |un(x) + tnw(x)|p−1 + |un(x)|p−1].

The maps gn are measurable and nonnegative, see (3). From Fatou’s lemma we
have

I = lim sup
n→+∞

∫
�

[−gn(x)] dx �
∫

�

lim sup
n→+∞

[−gn(x)] dx = J.

Let Bn = An + gn, where

An(x) = F(x, un(x) + tnw(x)) − F(x, un(x))

tn
.

By the Lebesgue dominated convergence theorem, we have

lim
n→+∞

∫
�

Bn dx = 2d

∫
�

|w(x)|(|u(x)| + |u(x)|p−1) dx.
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Therefore, we have

I = lim sup
n→+∞

FE(un + tnw) − FE(un)

tn
− lim

n→+∞

∫
�

Bn dx

= F 0
E(u;w) − 2d

∫
�

|w(x)|(|u(x)| + |u(x)|p−1) dx.

Now, we estimate J. We have J � JA − JB , where

JA =
∫

�

lim sup
n→+∞

An(x) dx and JB =
∫

�

lim inf
n→+∞ Bn(x) dx.

Since un(x) → u(x) a.e. in � and tn → 0+, we have

JB = 2d

∫
�

|w(x)|(|u(x)| + |u(x)|p−1) dx.

On the other hand,

JA =
∫

�

lim sup
n→+∞

F(x, un(x) + tnw(x)) − F(x, un(x))

tn
dx

�
∫

�

lim sup
y→u(x), t→0+

F(x, y + tw(x)) − F(x, y)

t
dx

=
∫

�

F 0(x, u(x);w(x)) dx.

From the above estimations we obtain (2), which concludes the proof. �
As we already mentioned in the Introduction, the proof of Theorem 3.1 is

based on a nonsmooth version of Ricceri’s result (see [27, Theorem 1]), proved
by Marano and Motreanu [20].

PROPOSITION 4.1 ([20, Theorem B]). Let X be a separable and reflexive
Banach space, let �1, �2: X → R two locally Lipschitz functions and � be a
real interval. Suppose that:

(i) �1 is weakly sequentially lower semicontinuous while �2 is weakly sequen-
tially continuous.

(ii) For every λ ∈ �, the function �1 + λ�2 satisfies (PS)c, c ∈ R, together with
lim‖u‖→+∞(�1(u) + λ�2(u)) = +∞.

(iii) There exists a continuous concave function h: � → R such that

sup
λ∈�

inf
u∈X

(�1(u) + λ�2(u) + h(λ)) < inf
u∈X

sup
λ∈�

(�1(u) + λ�2(u) + h(λ)).

Then there is an open interval �0 ⊆ � and a number σ > 0 such that for each
λ ∈ �0 the function �1 + λ�2 has at least three critical points in X (with different
critical values), having norm less than σ.
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Remark 4.1. Note that Proposition 4.1 is a particular form of [20, Theorem B].
Indeed, in [20], the authors work in a very general framework, considering instead
of �1 functions of the form �1+ψ , where ψ : X →]−∞, +∞] is convex, proper,
and lower semicontinuous, i.e. functions of Motreanu–Panagiotopoulos type (see
[21, Chapter 3]). We emphasize that in our case (i.e. ψ = 0), the Palais–Smale
condition and critical point notion of Motreanu and Panagiotopoulos coincide with
those of Chang [7] (see also [21, Remark 3.1]).

In order to prove Theorem 3.2, we recall the following result.

PROPOSITION 4.2. Let E be a Hilbert space, {ej : j ∈ N} an orthonormal basis
of E and set Ek = span{e1, . . . , ek}. Let h: E → R be an even, locally Lipschitz
function such that:

(i) h satisfies (C)c for all c > h(0).

(ii) For all k � 1 there exists Rk > 0 such that h(u) � h(0), for all u ∈ Ek with
‖u‖ � Rk.

(iii) There exist k0 � 1, b > h(0) and ρ > 0 such that h(u) � b for every u ∈ E⊥
k0

with ‖u‖ = ρ.

Then h possesses a sequence of critical values {ck} such that ck → +∞ as
k → +∞.

Remark 4.2. The above result is a nonsmooth version of the fountain theorem
of Bartsch (see [3, Theorem 2.25]). Note that although the original result involves
the Palais–Smale condition and not the Cerami one, this extension can be made
by means of a suitable deformation lemma. For other nonsmooth extension, even
for continuous functions, the reader can consult the paper of Arioli and Gazzola
[2, Theorems 4.3 and 4.4]. See also [21, Corollary 2.7].

Let G be a compact Lie group which acts linear isometrically on the real Banach
space (X, ‖ · ‖), that is, the action G × X → X: [g, u] �→ gu is continuous and
for every g ∈ G, the map u �→ gu is linear such that ‖gu‖ = ‖u‖ for every u ∈ X.

A function h: X → R is G−invariant if h(gu) = h(u) for all g ∈ G and u ∈ X.

Denoting by XG = {u ∈ X : gu = u for all g ∈ G}, we have the principle of
symmetric criticality for locally Lipschitz functions, proved by Krawcewicz and
Marzantowicz [17, p. 1045] (see also [18]).

PROPOSITION 4.3. Let h: X → R be a G-invariant, locally Lipschitz functional.
If hG denotes the restriction of h to XG and u ∈ XG is a critical point of hG then
u is a critical point of h.

Remark 4.3. For differentiable functions, the above principle has been proved
by Palais [24].
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5. Proof of Theorem 3.1

Let �: H 1
0 (�) × [0, +∞[ → R defined by

�(u, λ) = 1
2‖u‖2

0 − λF (u). (4)

By virtue of Lemma 4.2, � is well-defined and �(·, λ) is a locally Lipschitz func-
tion for all λ ∈ [0, +∞[. Let us denote by �s the restriction of � to H 1

0,s(�) ×
[0, +∞[, while Fs , 〈·, ·〉s and ‖·‖s the restrictions of F , 〈·, ·〉0 and ‖·‖0 to H 1

0,s(�),
respectively. We will show that the assumptions of Proposition 4.1 are fulfilled with
the following choice: X = H 1

0,s(�), � = [0, +∞[, �1 = (1/2)‖ · ‖2
s , �2 = −Fs

and h(λ) = ρ0λ, λ ∈ � (ρ0 > 0 will be specified later).
Clearly, �1 and �2 are locally Lipschitz functions. Moreover, �1 ∈ C1(X, R).

The weakly sequentially lower semicontinuity of �1 is obvious. Now, let {un} be a
sequence from X which converges weakly to u ∈ X. In particular, {un} is bounded
in X and by virtue of Lemma 4.1, F(x, t) = o(t2) as t → 0 and F(x, t) = o(t2∗

) as
t → +∞, for a.e. x ∈ �. From [11, Lemma 4, p. 368] it follows Fs(un) → Fs(u),
that is, �2 is weakly sequentially continuous. This proves (i) from Proposition 4.1.

Now, let us fix λ ∈ �. Firstly, we will show that

lim‖u‖s→+∞ �s(u, λ) = +∞. (5)

Indeed, due to (F3), by Hölder’s inequality we have

�s(u, λ) = �1(u) + λ�2(u)

� 1
2‖u‖2

s − λ

∫
�

α(x)|u(x)|q dx − λ

∫
�

β(x) dx

� 1
2‖u‖2

s − λ‖α‖ ν
ν−q

‖u‖q
ν − λ‖β‖1.

Since X ↪→ Lν(�) is continuous and q < 2, it is clear that ‖u‖s → +∞ implies
�s(u, λ) → +∞.

In the sequel, let us consider a sequence {un} from X such that

�s(un, λ) −→ c ∈ R, (6)

m�s(·,λ)(un) −→ 0 (7)

as n → +∞. It is clear from (5) and (6) that {un} should be bounded in X. Since
N − m � 2, the embedding X ↪→ Lp(�) is compact (see [12, Theorem 1] or
[19, Théorème III.2.]). Therefore, up to a subsequence, un ⇀ u in X and un → u

in Lp(�). From Proposition 2.1(iii) we have

�s(·, λ)0(un; u − un) = 〈un, u − un〉s + λ(−Fs)
0(un; u − un),

�s(·, λ)0(u; un − u) = 〈u, un − u〉s + λ(−Fs)
0(u; un − u).

Adding these two relations and using Proposition 2.1(i), we have

‖un − u‖2
s = λ[Fs

0(un;−u + un) + Fs
0(u;−un + u)] −

− �s(·, λ)0(un; u − un) − �s(·, λ)0(u; un − u).
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On the other hand, there exists zn ∈ ∂�s(·, λ)(un) such that ‖zn‖s = m�s(·,λ)(un).

Here, we used the Riesz representation theorem. By (7), one has ‖zn‖s → 0 as
n → +∞. Since un ⇀ u in X, fixing an element z ∈ ∂�s(·, λ)(u), we have
〈z, un−u〉s → 0. Therefore, by the inequality (2) (with E = X), Proposition 2.1(ii)
and Lemma 4.1(i), we have

‖un − u‖2
s � λ

∫
�

[F 0(x, un(x);−u(x) + un(x)) + F 0(x, u(x);−un(x) +
+ u(x))] dx − 〈zn, u − un〉s − 〈z, un − u〉s

= λ

∫
�

max{ξn(x)(−u(x) + un(x)) : ξn(x) ∈ ∂F (x, un(x))} dx +

+ λ

∫
�

max{ξ(x)(−un(x) + u(x)) : ξ(x) ∈ ∂F (x, u(x))} dx −
− 〈zn, u − un〉s − 〈z, un − u〉s

� λ

∫
�

[ε(|un(x)| + |u(x)|) + c(ε)(|un(x)|p−1 +
+ |u(x)|p−1)]|un(x) − u(x)| dx + ‖zn‖s‖u − un‖s −

− 〈z, un − u〉s
� 2ελk2

2(‖un‖2
s + ‖u‖2

s ) + λc(ε)(‖un‖p−1
p +

+ ‖u‖p−1
p )‖un − u‖p + ‖zn‖s‖u − un‖s − 〈z, un − u〉s .

Due to the arbitrariness of ε > 0, we have that ‖un −u‖2
s → 0 as n → +∞. Thus,

{un} converges strongly to u in X. This concludes (ii) from Proposition 4.1.
The proof of (iii) is similar to that of Ricceri [28]. By virtue of Lemma 4.1(ii),

we have that for

g(r) := sup{Fs(u) : ‖u‖2
s � 2r},

limr→0+ (g(r)/r) = 0. Since u0 ∈ X from (F4) cannot be 0 (note that F(x, 0) = 0
for a.e. x ∈ �), choose η such that

0 < η <
2

‖u0‖2
s

Fs(u0).

Therefore, there exists r0 ∈ ]0, ‖u0‖2
s /2[ such that g(r0) < ηr0. Thus, g(r0) <

(2r0/‖u0‖2
s )Fs(u0). Let ρ0 > 0 such that

g(r0) < ρ0 <
2r0

‖u0‖2
s

Fs(u0). (8)

We shall prove that h: � → R, defined by h(λ) = ρ0λ fulfils the inequality (iii)
from Proposition 4.1.

Since r0 < ‖u0‖2
s /2, by (8) we have

ρ0 < Fs(u0). (9)
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Clearly, the function λ �→ infu∈X((1/2)‖u‖2
s + λ(ρ0 − Fs(u))) is upper semicon-

tinuous on �. Due to (9), we have

lim
λ→+∞ inf

u∈X
(�s(u, λ) + ρ0λ) � lim

λ→+∞( 1
2‖u0‖2

s + λ(ρ0 − Fs(u0))) = −∞.

Thus we find an element λ ∈ � such that

sup
λ∈�

inf
u∈X

(�s(u, λ) + ρ0λ) = inf
u∈X

( 1
2‖u‖2

s + λ(ρ0 − Fs(u))). (10)

Since g(r0) < ρ0, for all u ∈ X such that ‖u‖2
s � 2r0, we have Fs(u) < ρ0.

Therefore,

r0 � inf

{‖u‖2
s

2
: Fs(u) � ρ0

}
.

On the other hand,

inf
u∈X

sup
λ∈�

(�s(u, λ) + ρ0λ) = inf
u∈X

(‖u‖2
s

2
+ sup

λ∈�

(λ(ρ0 − Fs(u)))

)

= inf
u∈X

{‖u‖2
s

2
: Fs(u) � ρ0

}
.

Combining with the above inequality, yields

r0 � inf
u∈X

sup
λ∈�

(�s(u, λ) + ρ0λ). (11)

We distinguish two cases.

(I) If 0 � λ < r0/ρ0, we have

sup
λ∈�

inf
u∈X

(�s(u, λ) + ρ0λ)
(10)= inf

u∈X
( 1

2‖u‖2
s + λ(ρ0 − Fs(u)))

� λρ0 < r0

(11)

� inf
u∈X

sup
λ∈�

(�s(u, λ) + ρ0λ).

(II) If r0/ρ0 � λ, we obtain

sup
λ∈�

inf
u∈X

(�s(u, λ) + ρ0λ)
(10)= inf

u∈X
( 1

2‖u‖2
s + λ(ρ0 − Fs(u)))

� 1
2‖u0‖2

s + λ(ρ0 − Fs(u0))

(9)

� 1
2‖u0‖2

s + r0

ρ0
(ρ0 − Fs(u0))

= 1
2‖u0‖2

s − r0

ρ0
Fs(u0) + r0

(8)
< r0

(11)

� inf
u∈X

sup
λ∈�

(�s(u, λ) + ρ0λ).



98 ALEXANDRU KRISTÁLY

Therefore, the assumptions of Proposition 4.1 are fulfilled. So, there exist an
open interval �0 ⊂ [0, +∞[ and σ > 0 such that for all λ ∈ �0 the function
�s(·, λ) has at least three critical points in H 1

0,s(�) (with different critical values),
having norms less than σ ; denote them by ui

λ (i ∈ {1, 2, 3}).
Let G = idm×O(N −m) be the subgroup of O(N). The action of G on H 1

0 (�)

can be defined by

gu(x, y) = u(x, g0y)

for all (x, y) ∈ ω × R
N−m = �, g = idm × g0 ∈ G and u ∈ H 1

0 (�). G acts
linear isometrically on H 1

0 (�), and �(·, λ) is G-invariant since F(·, s) is axially
symmetric for all s ∈ R. Moreover, we observe that

H 1
0 (�)G df.= {u ∈ H 1

0 (�) : gu = u for all g ∈ G} = H 1
0,s(�).

By Proposition 4.3 it follows that ui
λ (i ∈ {1, 2, 3}) are also critical points of

�(·, λ), that is

�(·, λ)0(ui
λ;w) � 0 for all w ∈ H 1

0 (�).

Using again Lemma 4.2 (now, with E = H 1
0 (�)), we obtain that

0 � 〈ui
λ, w〉0 + λ(−F )0(ui

λ;w)

= 〈ui
λ, w〉0 + λF 0(ui

λ;−w)

�
∫

�

∇ui
λ∇w dx + λ

∫
�

F 0(x, ui
λ(x);−w(x)) dx

for all w ∈ H 1
0 (�). This means that ui

λ (i ∈ {1, 2, 3}) are solutions for (EPHIλ),
which completes the proof.

6. Proof of Theorem 3.2

Throughout this section, we suppose that assumptions of Theorem 3.2 are fulfilled.
Let � from (4), and let us denote by FE , �E(·, λ), 〈·, ·〉E and ‖ · ‖E the restrictions
of F , �(·, λ), 〈·, ·〉0 and ‖ · ‖0, respectively, to a closed subspace E of H 1

0 (�),
(λ > 0).

LEMMA 6.1. If the embedding E ↪→ Lp(�) is compact then �E(·, λ) satisfies
(C)c for all λ, c > 0.

Proof. Let us fix a λ > 0 and a sequence {un} from E such that �E(un, λ) →
c > 0 and

(1 + ‖un‖E)m�E(·,λ)(un) −→ 0 (12)

as n → +∞. We shall prove firstly that {un} is bounded in E. Let zn ∈
∂�E(·, λ)(un) such that ‖zn‖E = m�E(·,λ)(un); it is clear that ‖zn‖E → 0 as
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n → +∞. Moreover, �E(·, λ)0(un; un) � 〈zn, un〉E � −‖zn‖E‖un‖E � −
(1 + ‖un‖E)m�E(·,λ)(un). Therefore, by Lemma 4.2, for n large enough

2c + 1 � 2�E(un, λ) − �E(·, λ)0(un; un)

= −2λFE(un) − λ(−FE)0(un; un)

� −λ

∫
�

[2F(x, un(x)) + F 0(x, un(x);−un(x))] dx

� λγ0‖un‖ν
ν.

Thus,

{un} is bounded in Lν(�). (13)

After integration in Lemma 4.1(ii), we obtain that for all ε > 0 there exists
c(ε) > 0 such that FE(un) � ε‖un‖2

E + c(ε)‖un‖p
p (note that ‖u‖2

2 � k2
2‖u‖2

0).
For n large, one has

c + 1 � �E(un, λ) = 1
2‖un‖2

E − λFE(un) � ( 1
2 − ελ)‖un‖2

E − λc(ε)‖un‖p
p.

Choosing ε > 0 small enough, we will find c2, c3 > 0 such that

c2‖un‖2
E � c + 1 + c3‖un‖p

p. (14)

Since ν � p (compare Lemma 4.1(ii) and (15) below), we distinguish two cases.

(I) If ν = p it is clear from (14) and (13) that {un} is bounded in E.

(II) If ν < p, we have the interpolation inequality

‖un‖p � ‖un‖1−δ
ν ‖un‖δ

2∗ � kδ
2∗‖un‖1−δ

ν ‖un‖δ
E

(since un ∈ E ↪→ Lν(�) ∩ L2∗
(�)), where 1/p = (1 − δ)/ν + δ/2∗. Since

ν > N(p − 2)/2, we have δp < 2. According again to (13) and (14), we
conclude that {un} should be bounded in E.

Now, we will proceed as in the proof of Theorem 3.1, changing �s(·, λ), X =
H 1

0,s(�), 〈·, ·〉s and ‖ · ‖s to �E(·, λ), E, 〈·, ·〉E and ‖ · ‖E , respectively; the only
minor modification will be in the estimation of �E(·, λ)0(un; u−un). In fact, there
we used (7) which is clearly implied by (12). This concludes the proof. �

Proof of Theorem 3.2. For the first part, we shall verify the assumptions of
Proposition 4.2, choosing E = H 1

0,s(�) and h = �E(·, λ), where �E(·, λ) denotes
the restriction of �(·, λ) to E, λ > 0 being arbitrary fixed. By assumption, F is
even in the second variable, so �E(·, λ) is also even, and by Lemma 4.2 it is a
locally Lipschitz function.

Since �E(0, λ) = 0, the assumption (i) from Proposition 4.2 follows from
Lemma 6.1, due to the compact embedding E ↪→ Lp(�).
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To prove (ii), we consider firstly the function g: � ×]0, +∞[ → R defined by

g(x, t) = t−2F(x, t) − γ (x)

ν − 2
tν−2.

Let us fix x ∈ �. Clearly, g(x, ·) is a locally Lipschitz function and by Proposi-
tion 2.1(iii) we have

∂g(x, t) ⊆ −2t−3F(x, t) + t−2∂F (x, t) − γ (x)tν−3, t > 0.

Let t > s > 0. By Lebourg’s mean value theorem, there exist τ = τ(x) ∈ ]s, t[ and
wτ = wτ(x) ∈ ∂g(x, τ ) such that g(x, t) − g(x, s) = wτ(t − s). Therefore, there
exists ξτ = ξτ (x) ∈ ∂F (x, τ ) such that wτ = −2τ−3F(x, τ ) + τ−2ξτ − γ (x)τ ν−3

and

g(x, t) − g(x, s) � −τ−3[2F(x, τ ) + F 0(x, τ ;−τ) + γ (x)τ ν](t − s).

By (F5) one has g(x, t) � g(x, s). On the other hand, by Lemma 4.1 we have that
F(x, s) = o(s2) as s → 0 for a.e. x ∈ �. If s → 0+ in the above inequality, we
have that F(x, t) � γ (x)tν/(ν−2) for all t > 0 and a.e. x ∈ �. Since F(x, 0) = 0
and F(x, ·) is even, we obtain that

F(x, t) � γ (x)

ν − 2
|t |ν for all t ∈ R and a.e. x ∈ �. (15)

Now, let {ei} be a fixed orthonormal basis of E and Ek = {e1, . . . , ek}, k � 1.

Denoting by ‖ · ‖E the restriction of ‖ · ‖0 to E, from (15) one has

�E(u, λ) � 1
2‖u‖2

E − λγ0

ν − 2
‖u‖ν

ν for all u ∈ E.

Let us fix k � 1 arbitrary. Since ν > 2 and on the finite-dimensional space Ek all
norms are equivalent (in particular ‖ · ‖0 and ‖ · ‖ν), choosing a large Rk > 0, we
have �E(u, λ) � �E(0, λ) = 0 if ‖u‖E � Rk, u ∈ Ek. This proves (ii).

Again, from Lemma 4.1(ii) we have that for all ε > 0 there exists c(ε) > 0 such
that FE(u) � ε‖u‖2

E + c(ε)‖u‖2
p for all u ∈ E. Let βk = sup{‖u‖p/‖u‖E : u ∈

E⊥
k , u 
= 0}. As in [4, Lemma 3.3], it can be proved that βk → 0 as k → +∞. For

u ∈ E⊥
k , one has

�E(u, λ) � ( 1
2 − ελ)‖u‖2

E − λc(ε)‖u‖p
p � ( 1

2 − ελ)‖u‖2
E − λc(ε)β

p

k ‖u‖p

E.

Choosing ε < (p − 2)(2pλ)−1 and ρk = (pλc(ε)β
p

k )1/(2−p), we have

�E(u, λ) �
(

1

2
− 1

p
− ελ

)
ρ2

k

for every u ∈ E⊥
k with ‖u‖E = ρk. Since βk → 0, then ρk → +∞ as k → +∞.

The assumption (iii) from Proposition 4.2 is concluded.
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Hence, �E(·, λ) has infinitely many critical points on E = H 1
0,s(�). Using

Proposition 4.3 and Lemma 4.2 as in the proof of Theorem 3.1, the above points
will be solutions for (EPHIλ).

Now, we deal with the second part. The following construction is inspired
by [4]. Let N = m + 4 or N � m + 6. In both cases we find at least a num-
ber k ∈ [2, (N − m)/2] ∩ N \ {(N − m − 1)/2}. For a such k ∈ N, we have
� = ω × R

k × R
k × R

N−2k−m. Let H = idm × O(k) × O(k) × O(N − 2k − m)

and define

Gτ = 〈H ∪ {τ }〉,
where τ(x1, x2, x3, x4) = (x1, x3, x2, x4), for every x1 ∈ ω, x2, x3 ∈ R

k, x4 ∈
R

N−2k−m. Gτ will be a subgroup of O(N) and its elements can be written uniquely
as h or hτ with h ∈ H. The action of Gτ on H 1

0 (�) is defined by

gu(x1, x2, x3, x4) = π(g)u(x1, g2x2, g3x3, g4x4) (16)

for all g = idm×g2×g3×g4 ∈ Gτ , (x1, x2, x3, x4) ∈ ω×R
k×R

k×R
N−2k−m, where

π : Gτ → {±1} is the canonical epimorphism, that is, π(h) = 1 and π(hτ) = −1
for all h ∈ H. The group Gτ acts linear isometrically on H 1

0 (�), and �(·, λ) is
Gτ -invariant, since F is axially symmetric in the first variable and even in the
second variable. Let

H 1
0,ns(�) = {u ∈ H 1

0 (�) : gu = u for all g ∈ Gτ }.
Clearly, H 1

0,ns(�) is a closed subspace of H 1
0 (�) and

H 1
0,ns(�) ⊂ H 1

0 (�)H df.= {u ∈ H 1
0 (�) : hu = u for all h ∈ H }.

On the other hand, H 1
0 (�)H ↪→ Lp(�) is compact (see [19, Théorème III.2]),

hence H 1
0,ns(�) ↪→ Lp(�) is also compact.

Now, repeating the proof of the first part for E = H 1
0,ns(�) instead of H 1

0,s(�),
we obtain infinitely many solutions for (EPHIλ), which belong to H 1

0,ns(�). But
we observe that 0 is the only axially symmetric function of H 1

0,ns(�). Indeed, let
u ∈ H 1

0,ns(�) ∩ H 1
0,s(�). Since gu = u for all g ∈ Gτ , choosing in particular

τ ∈ Gτ and using (16), we have that u(x1, x2, x3, x4) = −u(x1, x3, x2, x4) for
all (x1, x2, x3, x4) ∈ ω × R

k × R
k × R

N−2k−m. Since u is axially symmetric and
|(x2, x3, x4)| = |(x3, x2, x4)|, (| · | being the norm on R

N−m), it follows that u

must be 0. Therefore, the above solutions are axially nonsymmetric functions. This
concludes the proof. �

7. Final Remarks

1. Theorem 3.2 complements Theorem 3.1 in the sense that in the first case F

is subquadratic (see (F3)) while in the second one F is superquadratic (see rela-
tion (15) and note that ν > 2).
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2. The reader can observe that we considered only N � m + 2. In fact, in this
case H 1

0,s(�) can be embedded compactly to Lp(�), p ∈ ]2, 2∗[ which was crucial
in the verification of the Palais–Smale and Cerami conditions. When N = m + 1
the above embedding is no longer compact. In the latter case it is recommended to
construct the convex closed cone (see [12, Theorem 2]), defined by

K = {u ∈ H 1
0 (ω × R) : u � 0, u(x, y) is nonincreasing in y for x ∈ ω,

y � 0, and u(x, y) is nondecreasing in y for x ∈ ω, y � 0},
because the Sobolev embedding from H 1

0 (ω × R) into Lp(ω × R) transforms the
bounded closed sets of K into relatively compact sets of Lp(ω × R), p ∈ ]2, 2∗[
(note that 2∗ = +∞, if m = 1). Since K is not a subspace of H 1

0 (ω×R), the above
described machinery (in Sections 5 and 6) does not work; however, we believe
that this inconvenience can be handled by the Motreanu–Panagiotopoulos type
functional (see Remark 4.1, choosing ψ as the indicator function of K). Since
this approach differs substantially to the above, we will treat it in a forthcoming
paper.
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