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Abstract. It is proved that a forward complete Berwald space of non-

positive flag curvature is a generalized Busemann’s geodesic space of non-

positive curvature.

1. Introduction

It is well known that the non-positivity of the flag curvature of a Finsler space
M implies that the geodesic rays emanating from a point x ∈ M are spread-
ing apart faster than the corresponding rays in TxM , i.e. the geodesic rays are
dispersing. In this paper we establish a stronger conclusion for Berwald spaces
concerning this dispersion. Namely, we prove that a class of forward complete
Berwald spaces of non-positive flag curvature is included in the class of gener-
alized Busemann’s geodesic spaces of non-positive curvature. This immediately
follows from our main theorem (see all details in Theorem 7):

For a Berwald space of non–positive flag curvature, in a suitable

neighborhood of any point, two geodesics γ1, γ2 : [0, 1] → M em-

anating from the same point γ1(0) = γ2(0) satisfy the inequality

2dF (γ1(
1
2
), γ2(

1
2
)) ≤ dF (γ1(1), γ2(1))

where dF means the Finslerian distance in the Berwald space.

This means that the length of a median line of a geodesic triangle cannot succeed
the half length of the corresponding side.
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A Berwald space is a special case of Finsler spaces where the Chern connection
reduces to a linear connection of the base manifold. Z.I. Szabó proved in [6] that
any Berwald space is Riemann-metrizable, i.e. there is a Riemannian space such
that its Levi–Civita connection coincides the linear connection of the Berwald
space. In particular, the geodesics of the Berwald space and the Riemannian
space are identical. Nevertheless, the Berwaldian and the Riemannian metrics
are different.

Kelly and Straus ([4]) showed that if the Hilbert metric of a convex domain sat-
isfies the inequality above, then the domain is an ellipsoid, i.e. the Hilbert metric
is Riemannian. The Hilbert metric has always negative constant flag curvature
−1, proven by T. Okada ([5]). It means that the property having non-positive flag
curvature is not enough to be non-positively curved in the sense of Busemann.

It is important to remark that there do exist non-Riemannian and non-flat
Berwald spaces with non-positive curvature. One such example in dimension three
has been pointed out to the authors by Z. Shen: Let (M, α) be a 2-dimensional
Riemannian space of constant curvature Kα ≤ 0, and ε an arbitrary positive
constant. Then the Finsler metric on R×M

F (t, x, y; τ, u, v) =
√

τ2 + α(x,y)(u, v) + ε
√

τ4 + α2
(x,y)(u, v)

satisfies the requirements. We have checked by standard Maple routines that F is
a Berwald metric, namely the geodesic coefficients are quadratic in the tange nt
vectors, and the flag curvature is non-positive, though not constant necessarily .

2. Preliminaries

Throughout the paper we use the notations and notions from [1]. We recall
some of them.

Let M be a n–dimensional C∞ manifold, TM =
⋃

x∈M TxM the tangent
bundle. We say that (M, F ) is a Finsler manifold if the continuous function
F : TM → R+ satisfies the following properties:

F is C∞ on TM \ {0}(1)

F (tu) = tF (u), ∀t ≥ 0, u ∈ TM(2)

The matrix gij(u) := (
1
2
F 2)yiyj (u) is positive definite ∀u ∈ TM \ {0}.(3)

Let σ : [0, 1] → M be a C∞ curve. Its integral length L(σ) is defined as

L(σ) =
∫ 1

0

F (σ, σ̇) dt.
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For x0, x1 ∈ M denote by Γ(x0, x1) the set of all piecewise C∞ curves σ : [0, 1] →
M such that σ(0) = x0 and σ(1) = x1. Define a map dF : M ×M → [0,∞) by

dF (x0, x1) = inf
σ∈Γ(x0,x1)

L(σ).

Of course, we have

dF (x0, x1) ≥ 0, where equality holds if and only if x0 = x1(4)

dF (x0, x2) ≤ dF (x0, x1) + dF (x1, x2).(5)

In general, dF (x0, x1) 6= dF (x1, x0), therefore dF is not a metric in the classical
sense.

Let σ(t), 0 ≤ t ≤ 1 be a geodesic with velocity field T = σ̇. A vector field J

along σ is said to be a Jacobi field if it satisfies the equation

(6) DT DT J + R(J, T )T = 0,

where R is the curvature tensor and

DT W =
[

dW i

dt
+ W jT k(Γi

jk)(σ,T )

]

∂

∂xi
|σ(s),

Γi
jk denotes the coefficients of the Chern connection, see [1, p. 130]. A Finsler

manifold is called a Berwald space if its Chern connection Γi
jk depends only on

the position. We remark that the equation (6) concerns the reference vector T .
In the sequel, let (x, y) ∈ TM \ 0 and V a section of the pull back bundle

π∗TM . Then

(7) K(y, V ) =
g(x,y)(R(V, y)y, V )

g(x,y)(y, y)g(x,y)(V, V )− [g(x,y)(y, V )]2
,

is the flag curvature with flag y and transverse edge V . Here g(x,y) := gij(x,y)dxi⊗
dxj := (1

2F 2)yiyj dxi ⊗ dxj is the Riemannian metric on the pull back bundle
π∗TM , see [1, p. 68]. Let K abbreviate the collection of flag curvatures

{K(V, W ) : 0 6= V, W ∈ TxM, x ∈ M, V and W are not collinear}.

We say that (M, F ) has non-positive flag curvature if K ≤ 0.

Proposition 1. Let (M, F ) be a Finsler manifold with non-positive flag curva-
ture. Then no geodesic contains a conjugate point.

Proof. See [1, p. 229]. £

Remark 2. The above proposition states that if we have a nonzero Jacobi field
along a geodesic σ : [0, 1] → M and J(0) = 0 then J(t) 6= 0 for all t ∈ (0, 1].
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3. Preparatory steps

Proposition 3. Let (M, F ) be a Berwald space with non-positive flag curvature,
J a Jacobi field along a geodesic σ : [0, 1] → M . Assuming that J(0) = 0, we
have

(8)
d2

dt2
[gJ(J, J)]

1
2 (t) ≥ 0 ∀ t ∈ (0, 1].

Proof. From the assumption and Remark 2 we have that J(t) 6= 0,∀ t ∈ (0, 1].
Hence gJ(J, J)(t) is well defined for all t ∈ (0, 1]. Moreover,

(9) [gJ(J, J)]
1
2 (t) = F (σ(t), J(t)) 6= 0 ∀ t ∈ (0, 1].

Let T the velocity field of σ. We have

d

dt
[gJ(J, J)]

1
2 (t) =

gJ(DT J, J)
[gJ(J, J)]

1
2

(t)

d2

dt2
[gJ(J, J)]

1
2 (t) =

d

dt

[

gJ(DT J, J)
[gJ(J, J)]

1
2

]

(t) =

[gJ(DT DT J, J) + gJ(DT J, DT J)] · [gJ(J, J)]
1
2 − g2

J(DT J, J) · [gJ(J, J)]−
1
2

gJ(J, J)
(t) =

gJ(DT DT J, J) · gJ(J, J) + gJ(DT J, DT J) · gJ(J, J)− g2
J(DT J, J)

[gJ(J, J)]
3
2

(t).

All differentiation is made here with respect to the reference vector J , while in the
Jacobi equation (6) the reference vector is T . Nevertheless, taking into account
that (M, F ) is a Berwald space, i.e. the Chern connection is independent of the
direction, the reference vector is irrelevant. Therefore the term gJ(DT DT J, J) is
equal to −gJ(R(J, T )T, J) by the Jacobi equation (6). This was the crucial point
where we used that (M, F ) is a Berwald space. In general, this step is impossible.

Using the symmetry property of the curvature, see [1, Exercise 3.9.6, p. 73],
the formula (7) of the flag curvature, and the Schwarz inequality we have

−gJ(R(J, T )T, J) = −gJ(R(T, J)J, T ) =

= −K(J, T ) · [gJ(J, J)gJ(T, T )− g2
J(J, T )] ≥ 0.

For the second and third terms of the numerator we apply the Schwarz inequality
again, and consequently, we obtain (8). £

Proposition 4. Under the conditions of Proposition 3 we have

[gJ(J, J)]
1
2 (s) + (t− s)

d

dt
[gJ(J, J)]

1
2 (s) ≤ F (σ(t), J(t)) ∀ t ∈ (0, 1], s ∈ (0, 1].
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Proof. Since J(t) 6= 0,∀ t ∈ (0, 1], the mapping t 7→ F (σ(t), J(t)) is C∞ on
(0, 1]. Using Proposition 3 and the second order Taylor formula about s we get
the assertion. £

Corollary 5. Under the conditions of Proposition 3 we have

(10) 2F (σ(
1
2
), J(

1
2
)) ≤ F (σ(1), J(1)).

Proof. First, let s = 1
2 and t = 1. We have

[gJ(J, J)]
1
2 (

1
2
) +

1
2

d

dt
[gJ(J, J)]

1
2 (

1
2
) ≤ F (σ(1), J(1)).

Secondly, let s = 1
2 and t → 0. Since F is continuous, J is C∞ and using J(0) = 0,

we get

[gJ(J, J)]
1
2 (

1
2
)− 1

2
d

dt
[gJ(J, J)]

1
2 (

1
2
) ≤ 0.

Adding the two inequalities above and using the relation (9) we get the desired
relation (10). £

4. Main theorem

Let (M, F ) be a Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one.

Let p ∈ M, r > 0. Let Bp(r) := {y ∈ TpM : F (p, y) < r} be the open tangent
ball, B+

p (r) := {x ∈ M : dF (p, x) < r} be the forward and B−p (r) := {x ∈ M :
dF (x, p) < r} be the backward metric ball respectively.

It is well-known that for every point p ∈ M there exists a small r > 0 (de-
pending only on p) such that for all points q in B+

p (r) ∩ B−p (r) the mapping expq

is C1-diffeomorphism from Bq(2r) onto B+
q (2r), see [1, p. 160], and every pair of

points q0, q1 in B+
p (r)∩B−p (r) can be joined by a unique minimizing geodesic from

q0 to q1. Since B−p (r) is an open set in the manifold topology, see [1, p. 155], we
have a small positive number r1 > 0 (and r1 ≤ r) such that B+

p (r1) ⊂ B−p (r), see
[1, p. 150]. Therefore, from above, for all p ∈ M there exists a r1 > 0 such that
for all points q in B+

p (r1) the mapping expq is C1-diffeomorphism from Bq(2r1)
onto B+

q (2r1), and every pair of points q0, q1 in B+
p (r1) can be joined by a unique

minimizing geodesic from q0 to q1.
Following the Whitehead’s theorem, see [7] or [1, Exercise 6.4.3, p. 164], there

exists ε > 0 (and ε ≤ r1) such that B+
p (ε) is strictly convex, i.e. any geodesic

segment with endpoints in B+
p (ε), it must entirely stay in B+

p (ε). Hence we can
summarize the above argument in the following
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Lemma 6. Let (M, F ) be a Finsler manifold, where F is positively (but perhaps
not absolutely) homogeneous of degree one. For every point p ∈ M there exists a
small % > 0 (depending only on p) such that for all q ∈ B+

p (%) the mapping expq

is C1-diffeomorphism from Bq(2%) onto B+
q (2%) and every pair of points q0, q1 in

B+
p (%) can be joined by a unique minimizing geodesic segment from q0 to q1 lying

entirely in B+
p (%).

Now, we give the main result of this paper.

Theorem 7. Let (M, F ) be a Berwald space with non-positive flag curvature,
where F is positively (but perhaps not absolutely) homogeneous of degree one.
Let p ∈ M be an arbitrary fixed point. Let % > 0 be as in Lemma 6 and let
γ1, γ2 : [0, 1] → M be two geodesics with γ1(0) = γ2(0) = x ∈ B+

p (%). Supposing
that γ1(1), γ2(1) ∈ B+

p (%), we have

(11) 2dF (γ1(
1
2
), γ2(

1
2
)) ≤ dF (γ1(1), γ2(1)).

Proof. From Lemma 6 we get a unique geodesic γ : [0, 1] → M joining γ1(1)
with γ2(1) and dF (γ1(1), γ2(1)) = L(γ). Of course, γ(s) ∈ B+

p (%),∀s ∈ [0, 1], and
exp−1

γ(s) is well defined on B+
γ(s)(2%).

We define a variation Σ(t, s) = expγ(s)((1−t)·exp−1
γ(s)(x)), Σ : [0, 1]×[0, 1] → M .

We observe that Σ(· , s) is geodesic, for all s ∈ [0, 1]. Moreover Σ(0, 0) = x =
γ1(0), Σ(1, 0) = γ(0) = γ1(1). From the uniqueness of the geodesic between x

and γ1(1), we have Σ(· , 0) = γ1. Similarly Σ(· , 1) = γ2.
Since Σ is a geodesic variation, the vector field Js defined by Js(t) = ∂

∂sΣ(t, s) ∈
TΣ(t,s)M is a Jacobi field along Σ(· , s), s ∈ [0, 1], see [1, p. 130].

We have Js(0) = 0, Js(1) = ∂
∂sΣ(1, s) = dγ

ds , Js( 1
2 ) = ∂

∂sΣ( 1
2 , s) and Σ(1, s) =

γ(s). From (10) we get

2F (Σ(
1
2
, s),

∂

∂s
Σ(

1
2
, s)) ≤ F (γ(s),

dγ

ds
)

for all fixed s ∈ [0, 1]. Integrating the above relation with respect to s from 0 to
1 we get

2L(Σ(
1
2
, ·)) = 2

∫ 1

0

F (Σ(
1
2
, s),

∂

∂s
Σ(

1
2
, s)) ds ≤

≤
∫ 1

0

F (γ(s),
dγ

ds
) ds = L(γ) = dF (γ1(1), γ2(1)).

Since Σ( 1
2 , 0) = γ1( 1

2 ), Σ( 1
2 , 1) = γ2( 1

2 ) and Σ( 1
2 , ·) is a C∞ curve, using the

definition of dF , we get the required relation (11). £
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Remark 8. From above it follows that if we take two geodesics γ1, γ2 : [0, 1] → M

from B+
p (%), we obtain that the function t 7→ dF (γ1(t), γ2(t)) is convex.

5. Generalized Busemann NPC spaces

Now we define the notion of generalized Busemann’s non-positive curvature
spaces.

Let (M, d) be a non-reversible metric space. (M, d) is called a geodesic space

if for every two points x, y ∈ M there exists a shortest geodesic arc joining them,
i.e. a continuous curve γ : [0, 1] → M with γ(0) = x, γ(1) = y and `(γ) = d(x, y),
where `(γ) denotes the length of γ and it is defined by

`(γ) = sup{
n

∑

i=1

d(γ(ti−1), γ(ti)) : 0 = t0 < t1 < · · · < tn = 1, n ∈ N }.

A geodesic space (M, d) is said to be a generalized Busemann non-positive
curvature (NPC) space if for every p ∈ M there exists δp > 0 such that for any
two shortest geodesics γ1, γ2 : [0, 1] → M with γ1(0) = γ2(0) = x ∈ B+(p, δp) and
with points γ1(1), γ2(1) ∈ B+(p, δp) we have

d(γ1(
1
2
), γ2(

1
2
)) ≤ 1

2
d(γ1(1), γ2(1)),

where B+(p, r) := {x ∈ M : d(p, x) < r}.
We remark that if (M, d) is a metric space, then the above notion coincide with
the classical Busemann NPC notion, see [3, Section 36].

We say that (M, F ) is forward complete if every geodesic γ : [a, b] → M can be
extended to a geodesic defined on [a,∞).

Theorem 9. Let (M, F ) be a connected forward complete Berwald space of non-
positive flag curvature. Then (M, dF ) is a generalized Busemann NPC space.

Proof. Using the assumption that (M, F ) is forward complete, and applying the
Hopf-Rinow theorem, see [1, Theorem 6.6.1, p. 168], we obtain that (M, dF ) is
a geodesic space. Moreover, in our case the two notions of length coincide, see
[2, Theorem 2]. Using the definition of generalized Busemann NPC space and
Theorem 7, the assertion holds. £

Remark 10. If F is absolutely homogeneous, we get that a connected complete
Berwald space with non-positive flag curvature is a Busemann NPC space in the
classical sense. In fact, the notion of forward completeness reduce to the classical
completeness.
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