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Abstract

In this paper we study the existence of nontrivial solutions for a class of gradient-type systems on
strip-like domains where the nonlinear term is not necessarily continuously differentiable. The proof
of the main result is based on a nonsmooth version of the Mountain Pass Theorem which involves
the Cerami compactness condition and on the Principle of Symmetric Criticality for locally Lipschitz
functions.
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1. Introduction

Let 2 c RY be a domain with smooth boundady2, F € C1(£2 x R?,R) and 1<
p,q < N. Several studies have appeared deplifith the existence of nonzero solutions
of the gradient-type system

(Sp.g.2) —Apu=F,(x,u,v) in$,
—Agv=Fy(x,u,v) ing2,
u=v=0 onads,
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where F, is the partial derivative of" with respect tau (similarly for F,), and Ayu =
div(|Vu|*=2Vu), « € {p, q}. For the case obounded domamwe refer the reader to the
papers of Boccardo and de Figueiredo [2], Faleteal. [11], de Figueiredo [12], Vélin and
de Thélin [22].

In this paper we considestrip-like domainsf the form2 = w x R¥Y ™", wherew C
R™ (m > 1) is an open bounded set, aNd— m > 2.

The motivation to consider such domainssas from certain mechanical problems,
as the nonlinear Klein—Gordon or Schrodinger equations (see, for instance, Amick [1],
Esteban [9], Lions [17]). In a recent paperar@do and Miyagaki [3] investigated a
problem related tqS,, , o) wheres?2 is a strip-like domain (or, in other words, an un-
bounded cylinder) or a domain between two infinite cylinders. In their case, the right-hand
side of (S,,,,2) is perturbed by the gradient-type derivative op&homogeneous term
(p* is the critical exponent), while the nonlinearifyis supposed to be autonomous and
p-homogeneous. Clearly, the homogeneity assumptions play a key role in their investiga-
tions. Although we do not treat the critical case in the present paper, we aliéy and
we do not assume any homogeneity property on the nonlinerity

In the above-mentioned papers [2,11,12], the regularity of the nonlinear tern¥(i%.,
continuously differentiable) is an indispeih$acondition in order to guarantee weak solu-
tions for (S,,4,2). On the other hand, reading the works of Clarke [5,6], Panagiotopoulos
[20,21], Motreanu and Pagetopoulos [18], and the very recent monograph of Motreanu
and Radulescu [19], one often encounters concrete problems in mechanics, engineering
and economics as well, where the nonlinear potentiabislifferentiable. So, the follow-
ing natural question arises: How can we handle (the corresponding form of) the problem
(Sp,q,2) if we abandon the differeiability of the nonlinear tern¥?

In this paper we restrict our attention to such nonlinearities whictoagdly Lipschitz
functions andegular in the sense of ClarKg]. In this setting(S, , ) requires a suitable
reformulation which is inspired by the theory dfemivariational inequalitiesdeveloped
by Panagiotopoulos [20]. For simplicity, we consider only the autonomous case i.e.,
will be supposed to be-independent. In order to do this reformulation, we assume the
following growth conditions on the partial generalized gradients of the locally Lipschitz
function F :R? — R:

(F1) There existy > 0 andr € 1p, p*[, s € lq, ¢*[ such that
wal < er(jul? ™+ o] PP 4 ju) 7Y, (1)
wyl < cx(jol?H 4 Ju] @D/ 4 o]t 2
for all (u, v) € R2, w, € 91F (u, v) andw, € 92F (u, v).
We denoted by F (4, v) the (partial) generalized gradient 8-, v) at the pointu,
and byo> F (u, v) that of F(u, -) atv (see Clarke [5])p* = Na/(N — «) (@ € {p,q}) is

the Sobolev critical exponent.
Now, we are in the position to formulate our problem, denoted furtheéspyé’g):
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Find (u, v) € Wg'”(2) x Wy (£2) such that

/ [Vu|P~>VuVw +/Ff(u(x), v(x); —w(x))dx >0 forallwe Wy (%),
2 2

/ [Vv|?~2VuVy +/F20(u(x), v(x); —y(x))dx >0 forally e Wy?(£).
2 2

Here,Ff(u, v; w) is the (partial) generalized directional derivativerof- , v) at the point
u € R in the directionw € R (see Section 2)F§(u, v; w) is defined in a similar manner.

Remark 1. When F e CL(R2 R) then (u, v) € Wy (22) x Wy !(£2) solves(S, , ) if
and only if (u, v) is a weak solution ofS, ; ) in the usual sense. Therefore, qhe formu-
lation of(Sp’q)_Q) recovers the classical proble, ;. ).

We require the following further set of assumptionsfon

(F2) F is regular oriR? in the sense of Clarke [5], ang(0, 0) = 0.
(F3) There exist2 > 0 andu, v > 1 such that

1 1
—co(lul™ + [v]") = F(u,v) + ;F{’(u, v —u) + EFS(“’ v; —v) 3)

for all (u, v) € R2.
(F4) jim MMl w0 € NF @ ) -, mAX ]t o € 2F (. v} _

0.
u,v—0 lu|p—1 u,v—0 [vja—1

Our main result can be formulated as follows:

Theorem 1. Let F:R? — R be a locally Lipschitz function satisfying@F1)—(F4)with
ps =qr and

/,L>maX{p,N(V—p)/p} and v>max{q,N(s—q)/q}. 4)

Then(S;, 4.02) Possesses at least a nonzero solution whose components are axially sym-
metric.

An element: € W&""(.Q) (o € {p, q}) is axially symmetridf u(x, gy) = u(x, y) for all
xew, yeRYN "™ andg € O(N —m). (O(N — m) is the orthogonal group iRY—".)

Remark 2. Theorem 1 extends or complements some of the above mentioned papers, even
in the differentiable case. For instance, with respect to [2,12], we allow the unboundedness
of the domain; the paper [9] deals only with tleakar case involving the Laplacian operator

(p = 2); and no homogeneity property is requiredBnsee [3].

Remark 3. The hypothesigps = gr is imposed by a technical reason. It will be used
in several times and it seems to be indispensable (see Propositions 5 and 6), taking into
account the unboundednessf
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Remark 4. Relation (3) is a nonsmooth type of one introduced by Costa and Magalhdes [8]
(see also [2,7,12]). We should mention that wires ¢, condition (3) is implied in many
cases by the following condition (of Ambrosetti—-Rabinowitz type):

yF(u,v) + Flo(u, v; —u) + on(u, v; —v) <0 forall(u,v)e R2, (5)

wherey > p. For the smooth form of (5), see for instance [2,7,12]. Indeed, from (5) and
Lebourg’s mean value theorem (see Proposition 1(iv) below), applied to the locally Lip-
schitz functiong : 10, oo[ — R, g(t) =t~ F(tu, tv) (with arbitrary fixed(u, v) € R?) we
obtain that

t7VF(tu,tv) > sV F(su,sv) forallt >s>0. (5)

If we assume in addition that
F(u,v)

liminf ——— >ag > 0,
u,v—=0 |ul¥ + |v|¥

by (5') we have for(u, v) # (0, 0)

F(su,sv)

t7Y F(tu, tv) > liminf 7 (lul” 4+ 1v") = ao(lul” + [v]?).

s—>0t |sul¥ +|sv

Now, substituting = 1 in the above inequality, this forces
PF @, v) + F(u, v —u) + F(u, v; —v) < (p — ) F(u, v) < —c(lul” + v]”),
wherec = ap(y — p) > 0. For (u, v) = (0, 0), relation (3) follows directly from (5).

Examplel. Let p =3/2, ¢ =9/4, 2 =1]a,b[ x R? (a < b) and
Fu,v) =u? + |v]"? + 1/4max [u|¥/?, [v]>/?).

Since F has neither homogeneity nor differentiability properties and the domain is not
bounded, the earlier results (see [2,3]) cannot be applidgking convex and locally Lip-
schitz function, (F2) holds (see Clarke [SoPosition 2.3.6]), while (F4) can be verified
easily. Choosing =5/2, s = 15/4 andu =5/2, v =7/2, the assumptions (F1), (F3)

and (4) hold too. Therefore we can apply Theorem 1, obtaining at least a nonzero solution

/
for (S5, /4. 1.1 x 2"

To prove our main theorem, we define the funcﬂaﬁnW&’p(Q) X W&’q(fz) — R by

H(u,v)=1/|Vu|p+E/|Vv|"—/F(u,v)dx (6)
pn q:z 2

forall u e W&”’(Q), ve W&"’(Q). We will prove that is a locally Lipschitz function

and’H restricted to the subspace of axially symmetric functionwéf”(.(z) X Wol’q(.(z)
satisfies the nonsmooth Cerami condition. Mower, by means of the Mountain Pass The-
orem, proved by Kourogenis and Papageorgiou [13], we obtain a critical point (in the sense
of Chang [4]) of the restricted function, the components of this element being axially sym-
metric. Using the Principle of Symmetric Criticality for locally Lipschitz functions, proved
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by Krawcewicz and Marzantowicz [14], the above-mentioned point will be a critical point
of H on the whole spacW&”’(.Q) X W&"’(Q), and consequently, a solution for our prob-
lem.

The paper is organized as follows: In Section 2, some facts about locally Lipschitz
and regular functions are given; in Section 3 a key inequality is proved; in Section 4 the
nonsmooth Cerami condition is verified for the functiihrestricted to the subspace of
axially symmetric functions; in Section 5 we discuss the mountain pass geometry of the
above-mentioned function while in the last section we will prove our theorem.

2. Basic notions

Let (X, | - ||) be areal Banach space aKd its topological dual. A functio : X — R
is called locally Lipschitz if each poini € X possesses a neighborhatf such that
|h(u1) — h(u2)| < L|lur — uz| for all ug, uz € N, for a constanL > 0 depending o\,.

The generalized directional derivative/oft the pointu € X in the direction; € X is

h(w+1tz) — h(w)
t

Ro(u; z) = lim sup

w—u,t—0t

(see [5]). The generalized gradient/oétu € X is defined by
dh(u)={x* e X*: (x*,2)x < hOu; z) forall z € X},

which is a nonempty, convex and*-compact subset aX*, where(-, -)x is the duality
pairing betweerk™ and X.

A pointu € X is acritical point of & if 0 € dh(u), that ish®(u; w) > 0 for all w € X.
In this caseh(u) is acritical value of . We definer, (u) = inf{||x*||x: x* € 0h(u)} (we
will use the notation|x*| x instead offjx™| x«).

The functioni satisfies the nonsmooth Cerami condition at levelR (shortly (C).),
if every sequencéx,} C X such thath(x,) — ¢ and (1 + ||x,|)An(x,) — O contains a
convergent subsequence in the nornXofsee [13]).

Now, we list some fundamental properties of the directional derivative and generalized
gradient which will be used throughout the paper.

Proposition 1 [5].

() (=h)°%u;z) =hOu; —z) forall u,z € X.

(ii) hO®u; z) = max{(x*, 2)x: x* € 0h(u)} forall u,z € X.

(iii) Let j:X — R be a continuously differentiable function. Thén(u) = {j'(u)},
j%u; z) coincides with(j’ (1), z)x and (h + j)O(u; 2) = hO®u; z) + (j'(u), z)x for
all u,z € X. Moreover,d(hj)(u) € j(u)dh(u) + h(u)j (u) forall u € X.

(iv) (Lebourg’s mean value theorgrhet u and v two points inX. Then there exists a
pointw in the open segment betweeandv, andx;; € dh(w) such that

h(u) — h(v) = (x

;"),u—v>X.
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(v) (Second Chain RujeLetY be a Banach space angt Y — X a continuously differ-
entiable function. Theh o j is locally Lipschitz and

d(ho () Sdh(j(M)oj'(y) forallyey.

We say that: is regular atu € X in the sense of Clarki] (shortly,regular atu € X),
if for all z € X the usual one-sided directional derivative

W (u:z) = lim h(u +1tz) — h(u)
’ t—0t t

exists andh’(u; z) = h%u; z). h is regular on X in the sense of Clarkéshortly, regular
on X) if it is regular at every point € X.

Proposition 2. Let h: X x X — R be a locally Lipschitz function which is regular at
(u,v) € X x X. Then

(i) 9h(u,v) C d1h(u,v) x d2h(u,v), whereorh(u, v) denotes the&partial) generalized
gradient ofa (-, v) at the pointu, anddzh (u, v) that of i (u, -) atv.

(i) WO, v; w, 7) < h?(u, v;w) + hg(u, v; z) forall w, z € X, Whel’ehg(u, v; w) (resp.
hg(u, v; 7)) is the(partial) generalized directional derivative éf- , v) (resp.A(u, -))
at the pointu € R (resp.v € R) in the directionw € R (resp.z € R).

Proof. For (i), see [5, Proposition 2.3.15]. Now, let us fix z € X. From Proposition 1(ii)
it follows that there exists* € dh(u, v) such that

RO, v; w, z) = (., w2y x-

By (i) we havex™ = (x7, x3), wherex; € 9;h(u, v) (i € {1,2}), and using the definition of
the generalized gradient, we obtdifyu, v; w, z) = (x],w)x + (x5, 2)x < h?(u, v;w) +
hg(u, v;z). O

3. A key inequality
Throughout the paper, the usual normof(£2) will be denoted byj| - g (B> 1).

Sinces2 has the cone property, we have the Sobolev embedﬁ&ﬁ(fz) — LB(2) (B e
[a, a*], @ €{p,q}), andW&’“(Q) can be endowed with the norm

1/a
||M||1,a=(/|Vu|a> (xe{p.q)).
2
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Let ¢g o > 0 be the embedding constant, i.gullg < cgollullre for all u € W&’“(Q).
The product spacW&”’(.Q) X W&"’(Q) will be endowed with the norni(u, v)|l1, .4 =
llulls,p + llvll1,4 @and we define the functiaf W(}’p(fz) X W&’q(.(z) — R by

Fu,v) = / F(u,v)dx
2
foru e Wy"(2), ve Wy ().

Proposition 3. If F:R? — R is a locally Lipschitz function which verifi¢s1) and (F2),
then the functionF is well-defined and locally Lipschitz. Suppose in addition thgt

and E, are closed subspaces W&”’(Q) and W&’q(ﬂ), respectively. ItFg denotes the
restriction of 7 to E = E, x E, then

Fo(u,v;w,y) < / FO(u(x), v(x); w(x), y(x))dx
2
forall u,w e E, andv, y € E,.

Proof. Let us fixu, v, w, y € R. By Lebourg’s mean value theorem we have an element
z€dF(Ou+ (1—0)w, v+ (1 —0)y) with 6 € ]0, 1] such that
F(u,v) = F(w,y) =(z, 0 — w, v = y))go.

SinceF is regular oriR2, using Proposition 2(i), we have = z; (9, u, v, w, y) € 8; F (u +
(1—60)w,0v+ (L—0)y) (i €{1,2})such that

Fu,v) — F(w,y)=z1(u — w) +z2(v — y).

From relations (1), (2) and from the fact that for AlE 10, oo[ there is a constamt8) > 0
such that

x+ P <eB)xP +yP) forallx,ye[0, o0,
we have
|F(u7 U) - F(wa y)|

< caf Ju = wl (ul? 4 o] P~ ol PPy PP oY)

1o = (1 31972l PP DR Ty
(7
wherecz = c3(c1, p. g, . s) > 0. Now, we fixu, w € W&”’(.Q) andv, y € W&"’(Q) arbi-
trary. Using Holder’s inequality, from (7) we have
-1 -1
| F(u,v) — F(w, y)| < c3| u, v) — (w,y)||1,p,q [Cﬁ,p(llullf,p + Ilelip )

-1 -1 -1
+Cp,pcz(]1,)q )Q/P(”v”gl’q )(I/P_’_”y”g-l,?q )Q/P)
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-1 -1 q g-1 g—1
el (Ml + Twllsh) + g (I + 1v1EY)

-1 -1 -1
+Cq,ch7q,p )p/q(”u”gfp )p/q+||w||§_qp )p/q)

e (I + i |

SinceF (0, 0) = 0, F is well-defined. Moreover, the Lipschitz property f6ris verified on
bounded sets OWSL’p(.Q) x W&"’(Q).
Now, we fixu, w € E, andv, y € E,. By definition, FO(u(x), v(x); w(x), y(x)) can be
written as the upper limit of
F(Z" +tw(x), 2% +ty(x)) — F(z%, zY)
t bl

where(z%, z) — (u(x), v(x)) take values in a countable dense subs&%fands — 0T
take rational values. Being the upper limit of measurable functionsef2, the func-
tion £2 5 x = FO(u(x), v(x); w(x), y(x)) is also measurable. Moreover, due to Proposi-
tion 1(ii) and relations (1) and (2), the above function belongska?).

SinceE, x E, is a closed subspace of a separdid@ach space, there exist elements
un € E,, v, € E; and numbers, — 07 such that(u,, v,) converges (strongly) ta«, v)
in E, x E; and

Fe(un + tqaw, vy + t,y) — Fg(un, vy)
ta '

.7-"2 (u,v;w,y)= nli_)moo
Moreover, without loss of generality, we may assume that

Uy (x) = ulx), vy(x)—>v(x) aexes?, (8)
and there exisk, € L*(£22,Ry) (@ € {p, g, r, s}) such that

|un ()| < min{h,(x), ke ()} and |, (x)| < minfhg (x), he(x)} 9)
aexe 2. Letg,:2 — RU{+oo} defined by

Fup(x) + tw(x), va(x) + 15y (x)) — F(un(x), vy (x))
In

+C3[\w(X)|(\un(x)\p71 i (0 + 1w @) [P+ Jun (o)1

gn(x) =—

+ 1 () + 1w )| 0200 + 1y @) | PP 4 v, ()PP
+ 1y (Jon | + [0a ) + iy o o)
 Jon @) + 1y [ () + 1w (0| TPy (0] 40P

The functiong, is measurable, and due to (7), it is nonnegative. Fatou’s lemma implies
that

A= [ lim Sur{—gn(x)] dx > limsup [—gn (x)] dx = B.

n—o0 n—odo
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Let D, = g, + C,, where
Fup(x) + tnw(x), v (x) + 1, y(x)) — F(un(x), va(x))
ty :

By the Lebesgue dominated convergence theorem (using (8) and (9)), we have

lim /Dndx=2C3/[|w|(|u|P—l+ |u|r—1+ |U|(P—l)l]/l7)

n—o0
2 2
+ (10l ol 4w 97DP/) ] dx

Cp(x) =

Therefore,
. F taw, ty) —F , .
B =limsup EWn &t W, Vn +1nY) = FE@Un, 0) lim /D,,dx
n— 00 tn n—oQ
2
=Fou,v; w, ) —2c3/[|w|(|u|"*l+ u|" L+ |v| P~ De/P)
2

+ 14+ ol T+ u) @ DP/) ] dx.
On the other hand4 < A1 — Ao, where

n— oo

A1= [ limsupC,(x)dx and A2=/IiminfD,,(x)dx.
n—0o0
Q Q

By (8), we have

Az= 2c3/[|w|(|u|l’*l+ ul L + [v| P~ Da/P)
2
+ 11 ol u @ DP/) ] dx
while

A= / limsup

Fun(xX) + taw(x), 0n () + tay (X)) = Fun(x), va(x))

n—00 I
2
] F(* 41 , L _F u’ v
</ lim sup (" +tw(x), 2% +ty(x)) (", z )dx
4 D> @) .0().0) t

= / Fo(u(x), v(x); w(x), y(x)) dx.
Q2
This completes the proof.O0

Remark 5. We point out that, while the inequality given in Proposition 3 is proved for
(subspaces of) the Sobolev spaﬁé”’(ﬂ) X W&"’(Q), under suitable growth conditions

on the nonlinear tern#, a similar inequality is known in the case of integral functionals
ontheL”(£2) x L1(£2) spaces, see [5, pp. 82-85]. We emphasize that in [5], the fact that
£2 has finite measure plays an indispensable role.
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We have the following relation between the critical pointg®band the solutions of
(S;, 7.92)"

Proposition 4. Under the conditions of Propositiady the function (from (6)) is well-
defined and locally Lipschitz owg*"(sz) X Wol’q(.Q). Moreover, every critical point
(u,v) € Wol”’(.Q) X Wol"’(sz) of H is a solution of(S,, , ).

Proof. Since the functiorwol’“(.(z) Su > (%Hu”%_a is of classC?! (« € {p, ¢}), the first
part follows from Proposition 3. Now, we choo#g, = W&”’(Q) andE, = W&"’(Q) in
Proposition 3. Due to Proposition 1(i), for &b, y) € W&’p(fz) X W&’q(fz) we have

0< Ho(u, v;w,y)

=/|Vu|p_2Vqu+/|Vvlq_2Vny+(—]:)0(u,v; w, y)
2 2

= / |VulP"2VuVw + / IVu|92VuVy + FOu, v; —w, —y)
2 2

</|vu|l’*zvuw)+/|Vu|q*2wvy
2 2

+/F0(u(x),v(x); —w(x), —y(x))dx.
2
By using Proposition 2(ii) and taking = 0, respectivelyw = 0 in the above inequality,
we obtain the corresponj inequalities froms;,,q’g). O

Remark 6. A natural question arises: Can the converse of the last part of Proposition 4
be proved, i.e., can one characterize the critical point§ &y means of the solutions of

(S;,, “o)? Unfortunately, it seems that this cannot be done. To see why, let us put ourselves
within the assumptions of Proposition 4. Usingdtas lemma, a calculation similar to that

in the proof of Proposition 3 shows that

Fou,viw, y)=F u,v; w, y) = / FO(u(x), v(x); w(x), y(x))dx. (10)
2

(For a similar relation on domains with finite measure and suitable growth conditions on
the termF, see [5, p. 85].) From (10), one has

HOu, v; w,y):/|Vu|p_2Vqu+/|VU|q_2VUVy
2 2

+ / FO(u(x), v(x); —w(x), —y(x))dx. (11)
2
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If we were dealing with acalar problemwhere the nonlinear term isgular, then we
would be able to obtain a formula similar to (11). In such a case, an element would be a
critical point for the corresponding functionifland only if it would be a solution of the
studied problem. But, in ounonscalar casethe problem has a different behaviour. The
main difficulty is caused by the inedlitst from Proposition 2(ii), which may bstrict. In-
deed, let us consider for instanée R2 — R, defined byF (u, v) = max|u|®?2, |v|*/?}.

It is clear thatF is regular onR? in the sense of Clarke and for evewy 8 > 0,
FOa,a; B, B) = FP(a, ; B) = F(a, a; B) = 5a¥2B/2.
Now, if we suppose thatu, v) |s a solution of(S/ Q) we cannot assert that

HO®u, v; w, y) >0 for all (w,y) e W0 P(2) x W&q(fz) taklng into account that the
inequality from Proposition 2(ii) mabe strict. So, it seems we negubreregularity onF,

not only the regularity in the sense of Clarke, in order to prove this implication. In spite
of the fact that formula (11) is more precis®n in the proof of Proposition 4, the latter
cannot be improved. This fact is another point where our approach differs from the scalar
case.

4. The Cerami condition

Since the embeddingwc}’“(!z) — LP() for B € [a, a*] (« € {p, q}) are not com-
pact, we introduce the action 6f=id” x O(N — m) on W&’“(Q) as
gu(x,y) =u(x, g5 "y)

forall (x,y) e o x RN ™" ¢ =id" x goe G andu W&’“(Q) (o € {p, q}). Moreover, the

actionG on Wy* (£2) is isometric, that ig|gull1,« = llull1q for all g € G, u € Wy*(£2)
(¢ € {p, q}). Let us denote by

W&g(.(z) ={ueWy*(R2): gu=uforallge G} (xeip.q)),

which is exactly the closed subspace of axially symmetric functionW(ﬂ)F(Q) The

embeddingsz“(.Q) — LA(R2), a < B <a* (a € {p,q)}) are compact (see [10,17],
and [9] fora = 2) In the sequel, we denote By andH the restrictions ofF andH to
Wy b(2) x Wy &(£2). respectively.

Proposition 5. Under the conditions of TheoreinH satisfies C). for all ¢ > 0.

Proof. Let{(u,, v,)} be a sequence froW&’G”(Q) X Wé’g(ﬂ) such that
He (Uup, vy) = ¢ >0, (12)
(1+ H (un, vn) ||l,p,q))\'HG (un, vn) = 0, (13)

asn — oo. SincedHg (uy,, vy) is w*-compact, we can fix;} € 9Hg (u,, v,) such that

A (Un, va) = 125+, Where]| - ||, denotes the norm of the dual W&’g(ﬂ) x W&_’g(.@).
Moreover, we have '
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o e 20)
G\ Uns Un; ns n | Z\<y» Up, —VUpn
P g P q Wy (2)x Wy &(2)

et (D] P B e

Applying Proposition 3 withe,, = W&’g(ﬂ) andE, = W&’g(fz), and using (12), (13) and
(3), one has for. large enough that

1 1
¢+ 1> Heun, v) — H <un Un; ;un, ;vn)

0 1 1
=—Fcn,vn) — (=FG)"| Un, Vn; —Un, —vp
p q
0 1 1
=—Fc(un, vy) _j:G Up, Vp; ——Up, ——VUp
p q

0 1 1
> —/[F(Mm vy) + F (”n(x)a v (X); _;un(x)’ _gvn(x)>i|dx
2

1 0
2—/ F(un,vn)+;F1 (tn (), vp(x); —un(x))

2

1
+ 5F§(un(x), Un (%); _Un(x))i| dx > cz/[lunl“ + [va]"] dx.
2
From the previous inequality we obtain that

{(un, va)} is bounded inL* (2) x L"(£2). (14)

By (F4) we have that for alt > 0 there exists (¢) > 0 such that iflu|?~1 4 |v|(P~Da/P <
§(¢) then

lwa| < &(lulP~t 4 [v|P~D4/P)  for all w, € 91F (u, v).
If |u|?~1+ |v|P~D4/P > §(¢), by using (1), we have
Wl <61[(Iul”_l+ |v|(p—1)q/p)(r—1)/(p—1)(5(8))(p—r)/(p—l) + |u|r—l]
<c@)(lul ™t | D/P),
Combining the above relations, we have that forall 0 there existg1(¢) > 0 such that
lwy| < 8(|u|P*1 + |U|(P*1)f1/l7) + 01(8)(|u|r71 + |v|(r*1)f1/l7) (15)

for all (u, v) € R?2 andw, € 91 F (u, v). A similar calculation shows that for afl> 0 there
existsca(g) > 0 such that

lwyl < (o] 4 [u]4=DP/7) 4 co(e) (Jo] 2 + Ju| CDP/4) (16)

forall (u, v) € RZ andw, € 92F (u, v).

Similarly as in (7), but using (15) and (16) instead of (1) and (2), respectively, and
keeping in mind thaf (0, 0) = 0, for all¢ > 0 there exists(s) = c(c1(g), c2(¢)) > 0 such
that
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Fu,v) <e(lul? + [0l P70 ju) + [o]? + |u] 97DP/u])
+c(@)(Jul” + [ TVVP | 4 ol + |u] S DPy)) (17)

for all (u, v) € R2.
After integration and using relatiops = gr, by Young’s and Holdés inequalities we
obtain

1 1 1 1
Fe(un, vp) < 8[<2+ - = —)IIunllﬁ + (2+ - — _>||Un||z:|
P q q P

11 , 11 .
+C(8)[(2+ - - _>||Mn||r + <2+ - - _>||Un||sj|'
r S S r

Therefore, due to (6), one has

1 1 1 1 1 1

Z—¢ 2+———>c”, }nu I +[——e<2+———)cq, }nv 19

[p < A T g p) ]
1 1 1 1

<7‘lc(un,vn)+c(8)|:(2+;—;)||Mn||;+(2+;—;>||Un||§}~

Choosing

1 1 1

0<g<—min{—p,—q}, (18)
3 PCp,p 4Cq.q

we findcz(¢), c4(¢) > 0 such that

c3(&)(lunllf , + Ioall{ ) < ¢+ 1+ ca@)(llunlly + llvally) (19)

for n large enough. Now, we will examine the behaviour of the sequefiegsi.} and
{llv. lI5}, respectively. To this end, we first observe that r andv < s. Indeed, keeping
in mind relationps = gr, letting w = y = 0 andu := ut¥/?, v := vt/ (t > 1) in (7),
from (30) below yield the required relations.

We distinguish two cases.

(I) w =r. From (14) we have thdt|u,||.} is bounded.

(I welmaxXp, N(r — p)/p}, r[. We have the interpolation inequality

luellr < Nl E2 1wl forallu e L*(2) N LY (£2)

with
*

s=L K

ropt—u
From (14) and the continuous embeddiv&é_’cp(fz) C Wol”’(.Q) < LP"(£2), we have
cs > 0 such thatjuy ||} < csllunlly’ . with 6 <p.

Taking into consideration the similar relations for the sequdiieg||3}, we can con-
clude from (19) that the sequenci, |1, ,} and{|v, |14} are bounded. Since the em-
beddingsW&_’G”(.Q) — L"(£2), W&’g(ﬂ) < L(§2) are compact, up to a subsequence, we
have
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(tn, va) = (u,v)  weakly InWy'h(2) x Wy d(£2), (20)
u, — u strongly inL”(£2), (21)
vy, — v strongly inL®(£2). (22)

Moreover, we have
H(();(ui’la Ups U — Up, U — Uy)

= / [Vin|P =2V, (Vu — Vuy) —i—/ [Vn |72V, (Vv — Vup)
2 2

+ (= F6) 2, vp = U, v — V)

and
H?;(u, V; Uy — U,V — V)

= / IVul?~2Vu(Vu, — Vu) +/ |Vo|?—2Vu(Vu, — Vo)
2 2

+ (=F6)°u, v; uy — u, vy — v).

Adding the above two relations, we obtain

Jp = /(|Vu,,|1’*2wn — |VulP=2Vu) (Vu, — Vi)
2
+ /(va—zwn — |Vu|772V0)(Vo, — V) = JF — J2 = T3, (23)
2
where
Jnl =.7-'(0;(un, Ups Uy — U, Uy — V) +}'8(u, ViU — Uy, V— Vp),
T2 =H, (U, Vo 1t — thn, v — V)
and
T3 =M (. v: uy — u, v, —v).

In the sequel, we will estimaté (i € {1, 2, 3}). Using Proposition 3, (15), (16) angs =
qr,one has

< /[Fo(un(X), Un (X); n (x) — u(x), v (x) — v(x))

2
+ Fo(u(x), v(x); u(x) —up(x), v(x) — v,,(x))] dx

< /[|Ff(un(x), U ()5 1 (X) — 1 ()| 4+ | FS (1t (), 02 (x); 0 (x) — v(x)) |

2
+ [F(u(x), v(x); u(x) — ()| + | FS (u(x), v(x); v(x) — vn(x))|]dx
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:/‘max{w;(x)(un(x) —u(x)): wh(x) € 91 F (un(x), vn(x))}‘dx

2

max{ w2 (x) (va (x) — v(x)): W(x) € B2F (1 (x), vy (x))} ‘ dx

max{wl(x)(u(x) — u,,(x)): wl(x) € 81F(u(x), v(x))}‘ dx

¥l
¥l

+/ max{w?(x) (v(x) — va (¥)): w3 (x) € 82F(u(x),v(x))}‘dx
2

-1 -1 -1 -1
< (hualy ™+ 5™+ T I~ 4 10129 =

-1 -1 -1 -1
(ol 10+ Bl 77 4 0P ) o = w1

_ _ -1 —1)s
+e1(8) (a4 el 4 1o 12 101 Y e = )

- - -1 -1
2@ (o171 4 1007 4 e IS 1l o = vl

Since the sequencés,} and{v,} are bounded irW&’G”(.Q) (= LP(2)NL"(£2)) and
W&’g(fz) (— L9(£2) N L5(£2)), respectively, and using relations (21) and (22), from the
arbitrariness of > 0 one has

lim SUpJnl <0. (24)
n—>oo
Since
J2> (a0 —up, v — U”)>W§
> — |||, (e = wnllep + v = vallng).

L)XWyl (2)

due to (13), we have
liminf J2 > 0. (25)

n—oo

Now, we fix an element* € 9H g (u, v). Clearly,

J,?)(Z*,(un_u’vn_ 1

”)>W&'g(n)xwo'g(m

and from (20) we have
liminf J3 > 0. (26)
n—o0

Therefore, from relations (23)—(26) we obtain

limsupJ, <O0. (27)
n—>oo
On the other hand, from the inequality
(11721 — |s]*~2s) (1 — 5), if & >2,
|t —s]% < !
(1772 = [s|%72) (1 — )2 ()t|* + |s]9)&9/2, ifl <a <2,
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forallz,s e RN (see [16]) and (27), we obtain that

lim /(|Vu,, — Vu|? +|Vv, — Vv|?) =0,

n—00
2

that is, the sequencés,} and{v,} are strongly convergent iWé’G”(Q) and W&’g(.@),
respectively. O

5. Mountain pass geometry

Proposition 6. Under the conditions of Theorefh there existy, p > 0 and (e, ¢;) €
Wo b (£2) x Wy & (£2) such that for all(u, v) € Wy' & (£2) x Wo'd(£2)

Hg(u,v) =n with || (u, v) || 1pg =P (28)
and

Itepe)]ly,y >0 Holep.eq) <O. (29)
Proof. By using (17), we obtain

1 1
Hg(u,v) = ;llullf,p + gllvll({,q - / F(u,v)dx
2

1 1 1 1 1 1
Z ¢ 2+———>c”, }Ilull” +[——s(2+———)cq, }Ilvllq
[p ( p o) "I g g p) T
1 1 1 1 ,
—c(e)[<2+———)||u||£+<2+———>Ilvlli}.
r s N r

Choosinge as in (18), we can fixs(¢), ce(e) > 0 such that

He(u,v) = es(@)(lullf , + vl ,) —co@ (llully , + llvlI,)-

WV

Since the functiom — (x’ + y")¥/?, t > 0, is nonincreasingy( y > 0), using agairps =
qr, we have

lully, + vl < [l , + 100, 17772
Therefore,
r/p—1
He(u,v) > [es(e) — C6(8)(||u||ip + ”U”Z,q) ](”””ip 4 ”U”Z,q)‘
Let0< p < 1 and denote
1, 1, .
By = {(u,v) € W'i(82) x Wo's(2): |, 0], =p}-

Then, we havép/2)MaXr.4} < ||u||ip + ||v||(iq < p forall (u, v) € B,. Choosingo small
enough, there existg> 0 such thatHs (u, v) > n for all (4, v) € B,, due to the fact that
r > p. This is exactly the relation (28).
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To prove (29), we fix arbitrary an elemerik, v) € R2. We define the function
g:10,00[ = R by
¢(t) =t F (Y Pu, 1Y) — cpm Bt p =i — oy L pvla=1 .
w—rp v—gq

Sinceg is locally Lipschitz, due to Lebourg’s mean value theorem, for a fixedl there
existst = 7(¢, u, v) € ]1, ¢[ such that

g(t) —g(1) € dg(r)t — 1),

whered; stands for the generalized gradient with respectdd®. From the Second Chain
Rule and Proposition 2(i), we have

QFYPu, tYav) %81F(tl/pu, Yyt r=ty 4 gazF(Il/pu, Yayya—ly,
Hence, by Proposition 1(iii) one has
3 g(t) C —172F(tYPu, 1Yy)
+ t_l[%alF(tl/pu, tYayp)lr=1y, 4 282F(t1/pu, tYa v)tl/q_lvj|
_ CZ[,M/p72|u|u + tV/q72|v|V]'

Let w® € d,g(r) such thatg(r) — g(1) = w™(t — 1). There existw? € 3; F (v¥/Pu, t%/4v)
(i € {1, 2}) such that

1 1
gt —g(D) = _r_Z[F(tl/pu, tVav) + Zwi(—tYPu) + —wi (=)
p q
+ (1t Pult + Irl/qvl")j|(t -1
1
> —TZ[F(tl/pu, Yy + —Flo(rl/pu, Yy, —cYry)
)4

1
+ = Fd(xYPu, e Yy, —cVay) +cz(|t1/pu|“ + |t1/qv|”):|(t -1).
q
Due to (3), we have(r) > g(1). Thus,
F(tYPu, 1Y) > tF(u, v) +cz[L(W” Ot 4+ -2 Ve t)|v|”i| (30)
w—p v—gq

forall r > 1 and(u, v) € R2.
Now, fix u$ € W&’g(ﬂ) andv) e W&’g(ﬂ) such that|u) ||, = [v)]l14 = 1. Then, for
everyt > 1 we have

1 1
1/p.0 ,1/4.0 1/p..0 ,1/q.0
Hc(t /”up,t /‘ivq)z <; +5>t_/F(t /Pup,t /qvq)dx
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p q v v
o ey T A e AR B

Due to Sobolev embeddingid ||, # 0+ [[v01l,. ThereforeHe 14/7uS, 1/70) — —o0

ast — oo (recall thaty > p andv > ¢). Choosingt = g large enough and denoting by

ep= té/pug ande, = té/qvg, we are led to (29). This completes the proofa

6. Proof of Theorem 1

We recall a version of the Mountain Passebrem, proved by Kourogenis and Papa-
georgiou [13, Theorem 6€].

Proposition 7. Let X be a Banach spacé,: X — R be a locally Lipschitz function with
h(0) = 0. Suppose that there exist an elemertX and constantg, n > 0 such that

() h(u) = nforall u e X with ||u]| = p;
(i)) llell > p andh(e) < O;
(iii) h satisfies(C)., with ¢ = inf, e maxeo,11A(y (¢)), whereI” = {y € C([0, 1], X):
y(©0)=0, y(1) =e}.

Thenc > n andc € R is a critical value ofh.

Proof of Theorem 1 completed. Let us choose&X = Wé’G"(.Q) X Wé’g(fz) andh = Hg
in Proposition 7. Conditions (i) and (ii) are verified due to Proposition 6. DefinirgR
as in Proposition 7 for the element= (e, ¢;) (ep, e, from Proposition 6), we have, >
n > 0. By Proposition 5}H¢ satisfies(C).,. Hence, there exists a critical poifio, vo) €
W(}_’g(fz) X W(}_’g(fz) of Hg, the critical valuec, = Hg (ug, vo) being strictly positive.
SinceH; (0, 0) =0, (ug, vo) cannot bgO, 0).

On the other hand, the acti@non W(}’p(fz) X W&’q(fz) can be defined by

g(u,v) = (gu,gv) forallge G, (u,v) € Wy (2) x Wy ().
Moreover,G acts isometrically on’lfol”’(.(z) x Wol’q(.(z) and is G-invariant, that is
lg@. v, ,,=l6v],,, and H(gw, v)="Hw v

forall g € G, (u,v) € Wy'” (2) x W (22).
Now, we are in the position to apply the Principle of Symmetric Criticality for locally
Lipschitz functions, proved by Krawcewicz and Marzantowicz [14, p. 1045] (see also [15]).

This means that the critical poitig, vo) € W&’G” (£2) x W&’g (£2) of H¢ will be a critical
point of H on the whole spacW&”’(Q) X W&"’(Q), due to the fact that
Wob(2) x Wod(2) = {(u,v) e Wy"(2) x Wy''(22):
g(u,v) = (u,v) forall g € G}.
Therefore, it remains to apply Proposition 40



204 A. Kristaly / J. Math. Anal. Appl. 299 (2004) 186-204

Acknowledgments

This paper was supported by the EU ResearchniimgiNetwork HPRN-CT-1999-00118 and the Research
Center of the Sapientia Foundation. It was done while the author was visiting the Institute of Mathematics of the
Polish Academy of Sciences. He thanks Professor Bogdaar&ajfor the kind invitation and all the staff of IM
PAN for the hospitality he received. He also thatiiks second referee for valuable suggestions.

References

[1] C.J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified
fluids, Ann. Scuola Norm. Sup. Pisa CI. Sci. 11 (1984) 441-499.

[2] L. Boccardo, D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear
Differential Equations Appl. 9 (2002) 309-323.

[3] P.C. Carrido, O.H. Miyagaki, Existence of non-talsolutions of elliptic variational systems in unbounded
domains, Nonlinear Anal. 51 (2002) 155-169.

[4] K.-C. Chang, Variational methodsfaon-differentiable functionals and thepplications to partial differ-
ential equations, J. Math. Anal. Appl. 80 (1981) 102-129.

[5] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[6] F.H. Clarke, Methods of Dynamic and Nonsmooth Opziation, Society for Indusial and Applied Mathe-
matics, Philadelphia, 1989.

[7] D.G. Costa, On a class of elliptic systemi, Electron. J. Differential Equations 111 (1994) 103-122.

[8] D.G. Costa, C.A. Magalh@es, A unified approach to aslaf strongly indefinite functionals, J. Differential
Equations 125 (1996) 521-548.

[9] M.J. Esteban, Nonlinear elliptic problems in strip-like domains: Symmetry of positive vortex rings, Nonlin-
ear Anal. 7 (1983) 365-379.

[10] X.L. Fan, Y.Z. Zhao, Linking and multiplicity results for the-Laplacian on unbounded cylinders, J. Math.
Anal. Appl. 260 (2001) 479-489.

[11] P. Felmer, R. Manasevich, F. de Thélin, Existence and uniqueness of positive solutions for certain quasilinear
elliptic systems, Comm. Partial Differential Equations 17 (1992) 2013-2029.

[12] D.G. de Figueiredo, Semilinear elliptic systems, in: Nonlinear Functional Analysis and Applications to
Differential Equations, Trieste, 199World Science, River Edge, NJ, 1998, pp. 122-152.

[13] N.-C. Kourogenis, N.-S. Papageorgiou, Nonsrhowitical point theory and nonlinear elliptic equations at
resonance, J. Austral. Math. Soc. 69 (2000) 245-271.

[14] W. Krawcewicz, W. Marzantowicz, Some remarlon the Lusternik—Schnirelman method for non-
differentiable functionals invariant with respectadinite group action, Rocky Mountain J. Math. 20 (1990)
1041-1049.

[15] A. Kristaly, Infinitely many radial and non-radial solutions for a class of hemivariational inequalities, Rocky
Mountain J. Math., in press.

[16] S.Y. Lao, Nonlinearp-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (1992)
1037-1045.

[17] P.L. Lions, Symétrie et compacité dades espaces Sobolev, J. Funct. Anal. 49 (1982) 315-334.

[18] D. Motreanu, P.D. Panagiotopoulos, Minimax Thensaand Qualitative Properties of the Solutions of Hemi-
variational Inequalities, Kluwer Academic, Dordrecht, 1999.

[19] D. Motreanu, V. Rdulescu, Variational and Non-Variatial Methods in Nonlinear Analysis and Boundary
Value Problems, KluweAcademic, Dordrecht, 2003.

[20] P.D. Panagiotopoulos, Hemivatitznal Inequalities. Applications in Bthanics and Engineering, Springer-
Verlag, Berlin, 1993.

[21] P.D. Panagiotopoulos, Inequality Problems in Mechgaicd Applications. Convex and Nonconvex Energy
Functionals, Birkhauser, Basel, 1985.

[22] J. Vélin, F. de Thélin, Existence and nonexistenceaftrivial solutions for some nonlinear elliptic systems,
Rev. Mat. Univ. Complut. Madrid 6 (1993) 153-194.



