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Abstract

In this paper we study the existence of nontrivial solutions for a class of gradient-type syste
strip-like domains where the nonlinear term is not necessarily continuously differentiable. The
of the main result is based on a nonsmooth version of the Mountain Pass Theorem which in
the Cerami compactness condition and on the Principle of Symmetric Criticality for locally Lips
functions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊂ R
N be a domain with smooth boundary∂Ω , F ∈ C1(Ω × R

2,R) and 1<

p,q < N . Several studies have appeared dealing with the existence of nonzero solutio
of the gradient-type system

(Sp,q,Ω) −∆pu = Fu(x,u, v) in Ω,

−∆qv = Fv(x,u, v) in Ω,

u = v = 0 on∂Ω,
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0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.06.026



A. Kristály / J. Math. Anal. Appl. 299 (2004) 186–204 187

e
d

s,
k [1],
a
n-
-hand

nd
stiga-

.,
lu-
ulos

anu
eering

-
oblem

.e.,
the

chitz
whereFu is the partial derivative ofF with respect tou (similarly for Fv), and∆αu =
div(|∇u|α−2∇u), α ∈ {p,q}. For the case ofbounded domains we refer the reader to th
papers of Boccardo and de Figueiredo [2], Felmer et al. [11], de Figueiredo [12], Vélin an
de Thélin [22].

In this paper we considerstrip-like domainsof the formΩ = ω × R
N−m, whereω ⊂

R
m (m � 1) is an open bounded set, andN − m � 2.

The motivation to consider such domains arises from certain mechanical problem
as the nonlinear Klein–Gordon or Schrödinger equations (see, for instance, Amic
Esteban [9], Lions [17]). In a recent paper, Carrião and Miyagaki [3] investigated
problem related to(Sp,p,Ω) whereΩ is a strip-like domain (or, in other words, an u
bounded cylinder) or a domain between two infinite cylinders. In their case, the right
side of(Sp,p,Ω) is perturbed by the gradient-type derivative of ap∗-homogeneous term
(p∗ is the critical exponent), while the nonlinearityF is supposed to be autonomous a
p-homogeneous. Clearly, the homogeneity assumptions play a key role in their inve
tions. Although we do not treat the critical case in the present paper, we allowp �= q and
we do not assume any homogeneity property on the nonlinearityF.

In the above-mentioned papers [2,11,12], the regularity of the nonlinear term (i.eF is
continuously differentiable) is an indispensable condition in order to guarantee weak so
tions for(Sp,q,Ω). On the other hand, reading the works of Clarke [5,6], Panagiotopo
[20,21], Motreanu and Panagiotopoulos [18], and the very recent monograph of Motre
and R̆adulescu [19], one often encounters concrete problems in mechanics, engin
and economics as well, where the nonlinear potential isnot differentiable. So, the follow
ing natural question arises: How can we handle (the corresponding form of) the pr
(Sp,q,Ω) if we abandon the differentiability of the nonlinear termF?

In this paper we restrict our attention to such nonlinearities which arelocally Lipschitz
functions andregular in the sense of Clarke[5]. In this setting,(Sp,q,Ω) requires a suitable
reformulation which is inspired by the theory ofhemivariational inequalities, developed
by Panagiotopoulos [20]. For simplicity, we consider only the autonomous case, iF

will be supposed to bex-independent. In order to do this reformulation, we assume
following growth conditions on the partial generalized gradients of the locally Lips
functionF :R2 → R:

(F1) There existc1 > 0 andr ∈ ]p,p∗[, s ∈ ]q, q∗[ such that

|wu| � c1
(|u|p−1 + |v|(p−1)q/p + |u|r−1), (1)

|wv| � c1
(|v|q−1 + |u|(q−1)p/q + |v|s−1) (2)

for all (u, v) ∈ R
2, wu ∈ ∂1F(u, v) andwv ∈ ∂2F(u, v).

We denoted by∂1F(u, v) the (partial) generalized gradient ofF(· , v) at the pointu,

and by∂2F(u, v) that ofF(u, ·) at v (see Clarke [5]);α∗ = Nα/(N − α) (α ∈ {p,q}) is
the Sobolev critical exponent.

Now, we are in the position to formulate our problem, denoted further by(S′ ):
p,q,Ω
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Find (u, v) ∈ W
1,p
0 (Ω) × W

1,q
0 (Ω) such that∫

Ω

|∇u|p−2∇u∇w +
∫
Ω

F 0
1

(
u(x), v(x);−w(x)

)
dx � 0 for all w ∈ W

1,p

0 (Ω),

∫
Ω

|∇v|q−2∇v∇y +
∫
Ω

F 0
2

(
u(x), v(x);−y(x)

)
dx � 0 for all y ∈ W

1,q
0 (Ω).

Here,F 0
1 (u, v;w) is the (partial) generalized directional derivative ofF(· , v) at the point

u ∈ R in the directionw ∈ R (see Section 2).F 0
2 (u, v;w) is defined in a similar manner.

Remark 1. WhenF ∈ C1(R2,R) then(u, v) ∈ W
1,p

0 (Ω) × W
1,q

0 (Ω) solves(S′
p,q,Ω) if

and only if(u, v) is a weak solution of(Sp,q,Ω) in the usual sense. Therefore, the form
lation of (S′

p,q,Ω) recovers the classical problem(Sp,q,Ω).

We require the following further set of assumptions onF :

(F2) F is regular onR2 in the sense of Clarke [5], andF(0,0) = 0.

(F3) There existc2 > 0 andµ,ν � 1 such that

−c2
(|u|µ + |v|ν) � F(u, v) + 1

p
F 0

1 (u, v;−u) + 1

q
F 0

2 (u, v;−v) (3)

for all (u, v) ∈ R
2.

(F4) lim
u,v→0

max{|wu|: wu ∈ ∂1F(u, v)}
|u|p−1

= lim
u,v→0

max{|wv|: wv ∈ ∂2F(u, v)}
|v|q−1

= 0.

Our main result can be formulated as follows:

Theorem 1. Let F :R2 → R be a locally Lipschitz function satisfying(F1)–(F4)with
ps = qr and

µ > max
{
p,N(r − p)/p

}
and ν > max

{
q,N(s − q)/q

}
. (4)

Then(S′
p,q,Ω) possesses at least a nonzero solution whose components are axiall

metric.

An elementu ∈ W
1,α
0 (Ω) (α ∈ {p,q}) is axially symmetricif u(x,gy) = u(x, y) for all

x ∈ ω, y ∈ R
N−m andg ∈ O(N − m). (O(N − m) is the orthogonal group inRN−m.)

Remark 2. Theorem 1 extends or complements some of the above mentioned paper
in the differentiable case. For instance, with respect to [2,12], we allow the unbounde
of the domain; the paper [9] deals only with the scalar case involving the Laplacian opera
(p = 2); and no homogeneity property is required onF, see [3].

Remark 3. The hypothesisps = qr is imposed by a technical reason. It will be us
in several times and it seems to be indispensable (see Propositions 5 and 6), tak
account the unboundedness ofΩ.
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Remark 4. Relation (3) is a nonsmooth type of one introduced by Costa and Magalhã
(see also [2,7,12]). We should mention that whenp = q, condition (3) is implied in many
cases by the following condition (of Ambrosetti–Rabinowitz type):

γF(u, v) + F 0
1 (u, v;−u) + F 0

2 (u, v;−v) � 0 for all (u, v) ∈ R
2, (5)

whereγ > p. For the smooth form of (5), see for instance [2,7,12]. Indeed, from (5)
Lebourg’s mean value theorem (see Proposition 1(iv) below), applied to the locally
schitz functiong : ]0,∞[→ R, g(t) = t−γ F (tu, tv) (with arbitrary fixed(u, v) ∈ R

2) we
obtain that

t−γ F (tu, tv) � s−γ F (su, sv) for all t � s > 0. (5′)

If we assume in addition that

lim inf
u,v→0

F(u, v)

|u|γ + |v|γ � a0 > 0,

by (5′) we have for(u, v) �= (0,0)

t−γ F (tu, tv) � lim inf
s→0+

F(su, sv)

|su|γ + |sv|γ
(|u|γ + |v|γ )

� a0
(|u|γ + |v|γ )

.

Now, substitutingt = 1 in the above inequality, this forces

pF(u, v) + F 0
1 (u, v;−u) + F 0

2 (u, v;−v) � (p − γ )F (u, v) � −c
(|u|γ + |v|γ )

,

wherec = a0(γ − p) > 0. For (u, v) = (0,0), relation (3) follows directly from (5).

Example 1. Let p = 3/2, q = 9/4, Ω = ]a, b[ × R
2 (a < b) and

F(u, v) = u2 + |v|7/2 + 1/4max
{|u|5/2, |v|5/2}.

SinceF has neither homogeneity nor differentiability properties and the domain i
bounded, the earlier results (see [2,3]) cannot be applied.F being convex and locally Lip
schitz function, (F2) holds (see Clarke [5, Proposition 2.3.6]), while (F4) can be verifie
easily. Choosingr = 5/2, s = 15/4 andµ = 5/2, ν = 7/2, the assumptions (F1), (F3
and (4) hold too. Therefore we can apply Theorem 1, obtaining at least a nonzero s
for (S′

3/2,9/4,]a,b[×R2).

To prove our main theorem, we define the functionH :W1,p
0 (Ω) × W

1,q
0 (Ω) → R by

H(u, v) = 1

p

∫
Ω

|∇u|p + 1

q

∫
Ω

|∇v|q −
∫
Ω

F(u, v) dx (6)

for all u ∈ W
1,p

0 (Ω), v ∈ W
1,q

0 (Ω). We will prove thatH is a locally Lipschitz function

andH restricted to the subspace of axially symmetric functions ofW
1,p

0 (Ω) × W
1,q

0 (Ω)

satisfies the nonsmooth Cerami condition. Moreover, by means of the Mountain Pass Th
orem, proved by Kourogenis and Papageorgiou [13], we obtain a critical point (in the
of Chang [4]) of the restricted function, the components of this element being axially
metric. Using the Principle of Symmetric Criticality for locally Lipschitz functions, pro
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by Krawcewicz and Marzantowicz [14], the above-mentioned point will be a critical p
of H on the whole spaceW1,p

0 (Ω) × W
1,q

0 (Ω), and consequently, a solution for our pro
lem.

The paper is organized as follows: In Section 2, some facts about locally Lips
and regular functions are given; in Section 3 a key inequality is proved; in Section
nonsmooth Cerami condition is verified for the functionH restricted to the subspace
axially symmetric functions; in Section 5 we discuss the mountain pass geometry
above-mentioned function while in the last section we will prove our theorem.

2. Basic notions

Let (X,‖ · ‖) be a real Banach space andX∗ its topological dual. A functionh :X → R

is called locally Lipschitz if each pointu ∈ X possesses a neighborhoodNu such that
|h(u1) −h(u2)| � L‖u1 −u2‖ for all u1, u2 ∈ Nu, for a constantL > 0 depending onNu.

The generalized directional derivative ofh at the pointu ∈ X in the directionz ∈ X is

h0(u; z) = lim sup
w→u, t→0+

h(w + tz) − h(w)

t

(see [5]). The generalized gradient ofh atu ∈ X is defined by

∂h(u) = {
x∗ ∈ X∗: 〈x∗, z〉X � h0(u; z) for all z ∈ X

}
,

which is a nonempty, convex andw∗-compact subset ofX∗, where〈· , ·〉X is the duality
pairing betweenX∗ andX.

A point u ∈ X is acritical point of h if 0 ∈ ∂h(u), that ish0(u;w) � 0 for all w ∈ X.
In this case,h(u) is acritical value of h. We defineλh(u) = inf{‖x∗‖X: x∗ ∈ ∂h(u)} (we
will use the notation‖x∗‖X instead of‖x∗‖X∗ ).

The functionh satisfies the nonsmooth Cerami condition at levelc ∈ R (shortly(C)c),
if every sequence{xn} ⊂ X such thath(xn) → c and (1 + ‖xn‖)λh(xn) → 0 contains a
convergent subsequence in the norm ofX (see [13]).

Now, we list some fundamental properties of the directional derivative and gener
gradient which will be used throughout the paper.

Proposition 1 [5].

(i) (−h)0(u; z) = h0(u;−z) for all u, z ∈ X.

(ii) h0(u; z) = max{〈x∗, z〉X: x∗ ∈ ∂h(u)} for all u, z ∈ X.

(iii) Let j :X → R be a continuously differentiable function. Then∂j (u) = {j ′(u)},
j0(u; z) coincides with〈j ′(u), z〉X and (h + j)0(u; z) = h0(u; z) + 〈j ′(u), z〉X for
all u, z ∈ X. Moreover,∂(hj)(u) ⊆ j (u)∂h(u) + h(u)j ′(u) for all u ∈ X.

(iv) (Lebourg’s mean value theorem) Let u and v two points inX. Then there exists
pointw in the open segment betweenu andv, andx∗

w ∈ ∂h(w) such that

h(u) − h(v) = 〈
x∗
w,u − v

〉
X
.
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(v) (Second Chain Rule) Let Y be a Banach space andj :Y → X a continuously differ-
entiable function. Thenh ◦ j is locally Lipschitz and

∂(h ◦ j)(y) ⊆ ∂h
(
j (y)

) ◦ j ′(y) for all y ∈ Y.

We say thath is regular atu ∈ X in the sense of Clarke[5] (shortly,regular atu ∈ X),
if for all z ∈ X the usual one-sided directional derivative

h′(u; z) = lim
t→0+

h(u + tz) − h(u)

t

exists andh′(u; z) = h0(u; z). h is regular onX in the sense of Clarke(shortly, regular
onX) if it is regular at every pointu ∈ X.

Proposition 2. Let h :X × X → R be a locally Lipschitz function which is regular
(u, v) ∈ X × X. Then

(i) ∂h(u, v) ⊆ ∂1h(u, v) × ∂2h(u, v), where∂1h(u, v) denotes the(partial) generalized
gradient ofh(· , v) at the pointu, and∂2h(u, v) that ofh(u, ·) at v.

(ii) h0(u, v;w,z) � h0
1(u, v;w) + h0

2(u, v; z) for all w,z ∈ X, whereh0
1(u, v;w) (resp.

h0
2(u, v; z)) is the(partial) generalized directional derivative ofh(· , v) (resp.h(u, ·))

at the pointu ∈ R (resp.v ∈ R) in the directionw ∈ R (resp.z ∈ R).

Proof. For (i), see [5, Proposition 2.3.15]. Now, let us fixw,z ∈ X. From Proposition 1(ii)
it follows that there existsx∗ ∈ ∂h(u, v) such that

h0(u, v;w,z) = 〈
x∗, (w, z)

〉
X×X

.

By (i) we havex∗ = (x∗
1, x∗

2), wherex∗
i ∈ ∂ih(u, v) (i ∈ {1,2}), and using the definition o

the generalized gradient, we obtainh0(u, v;w,z) = 〈x∗
1,w〉X + 〈x∗

2, z〉X � h0
1(u, v;w) +

h0
2(u, v; z). �

3. A key inequality

Throughout the paper, the usual norm ofLβ(Ω) will be denoted by‖ · ‖β (β > 1).
SinceΩ has the cone property, we have the Sobolev embeddingW

1,α
0 (Ω) ↪→ Lβ(Ω) (β ∈

[α,α∗], α ∈ {p,q}), andW
1,α
0 (Ω) can be endowed with the norm

‖u‖1,α =
(∫

|∇u|α
)1/α (

α ∈ {p,q}).

Ω
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Let cβ,α > 0 be the embedding constant, i.e.,‖u‖β � cβ,α‖u‖1,α for all u ∈ W
1,α
0 (Ω).

The product spaceW1,p

0 (Ω) × W
1,q

0 (Ω) will be endowed with the norm‖(u, v)‖1,p,q =
‖u‖1,p + ‖v‖1,q and we define the functionF :W1,p

0 (Ω) × W
1,q

0 (Ω) → R by

F(u, v) =
∫
Ω

F(u, v) dx

for u ∈ W
1,p

0 (Ω), v ∈ W
1,q

0 (Ω).

Proposition 3. If F :R2 → R is a locally Lipschitz function which verifies(F1) and (F2),
then the functionF is well-defined and locally Lipschitz. Suppose in addition thatEp

andEq are closed subspaces ofW
1,p

0 (Ω) andW
1,q

0 (Ω), respectively. IfFE denotes the
restriction ofF to E = Ep × Eq then

F0
E(u, v;w,y) �

∫
Ω

F 0(u(x), v(x);w(x), y(x)
)
dx

for all u,w ∈ Ep andv, y ∈ Eq.

Proof. Let us fix u,v,w,y ∈ R. By Lebourg’s mean value theorem we have an elem
z ∈ ∂F (θu + (1− θ)w, θv + (1− θ)y) with θ ∈ ]0,1[ such that

F(u, v) − F(w,y) = 〈
z, (u − w,v − y)

〉
R2.

SinceF is regular onR2, using Proposition 2(i), we havezi = zi(θ, u, v,w,y) ∈ ∂iF (θu+
(1− θ)w, θv + (1− θ)y) (i ∈ {1,2}) such that

F(u, v) − F(w,y) = z1(u − w) + z2(v − y).

From relations (1), (2) and from the fact that for allβ ∈ ]0,∞[ there is a constantc(β) > 0
such that

(x + y)β � c(β)(xβ + yβ) for all x, y ∈ [0,∞[,
we have∣∣F(u, v) − F(w,y)

∣∣
� c3

[
|u − w|(|u|p−1 + |w|p−1 + |v|(p−1)q/p + |y|(p−1)q/p + |u|r−1 + |w|r−1)

+ |v − y|(|v|q−1 + |y|q−1 + |u|(q−1)p/q + |w|(q−1)p/q + |v|s−1 + |y|s−1)],
(7)

wherec3 = c3(c1,p, q, r, s) > 0. Now, we fix u,w ∈ W
1,p

0 (Ω) andv, y ∈ W
1,q

0 (Ω) arbi-
trary. Using Holder’s inequality, from (7) we have∣∣F(u, v) −F(w,y)

∣∣ � c3
∥∥(u, v) − (w,y)

∥∥
1,p,q

[
c
p
p,p

(‖u‖p−1
1,p + ‖w‖p−1

1,p

)
+ cp,pc

(p−1)q/p
q,q

(‖v‖(p−1)q/p + ‖y‖(p−1)q/p)

1,q 1,q
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plies
+ cr
r,p

(‖u‖r−1
1,p + ‖w‖r−1

1,p

) + c
q
q,q

(‖v‖q−1
1,q + ‖y‖q−1

1,q

)
+ cq,qc

(q−1)p/q
p,p

(‖u‖(q−1)p/q

1,p + ‖w‖(q−1)p/q

1,p

)
+ cs

s,q

(‖v‖s−1
1,q + ‖y‖s−1

1,q

)]
.

SinceF(0,0) = 0,F is well-defined. Moreover, the Lipschitz property forF is verified on
bounded sets ofW1,p

0 (Ω) × W
1,q

0 (Ω).
Now, we fixu,w ∈ Ep andv, y ∈ Eq. By definition,F 0(u(x), v(x);w(x), y(x)) can be

written as the upper limit of

F(zu + tw(x), zv + ty(x)) − F(zu, zv)

t
,

where(zu, zv) → (u(x), v(x)) take values in a countable dense subset ofR
2 andt → 0+

take rational values. Being the upper limit of measurable functions ofx ∈ Ω, the func-
tion Ω � x �→ F 0(u(x), v(x);w(x), y(x)) is also measurable. Moreover, due to Propo
tion 1(ii) and relations (1) and (2), the above function belongs toL1(Ω).

SinceEp × Eq is a closed subspace of a separableBanach space, there exist eleme
un ∈ Ep, vn ∈ Eq and numberstn → 0+ such that(un, vn) converges (strongly) to(u, v)

in Ep × Eq and

F0
E(u, v;w,y) = lim

n→∞
FE(un + tnw, vn + tny) −FE(un, vn)

tn
.

Moreover, without loss of generality, we may assume that

un(x) → u(x), vn(x) → v(x) a.e.x ∈ Ω, (8)

and there existhα ∈ Lα(Ω,R+) (α ∈ {p,q, r, s}) such that∣∣un(x)
∣∣ � min

{
hp(x),hr(x)

}
and

∣∣vn(x)
∣∣ � min

{
hq(x),hs(x)

}
(9)

a.e.x ∈ Ω. Let gn :Ω → R ∪ {+∞} defined by

gn(x) = −F(un(x) + tnw(x), vn(x) + tny(x)) − F(un(x), vn(x))

tn

+ c3

[∣∣w(x)
∣∣(∣∣un(x)

∣∣p−1 + ∣∣un(x) + tnw(x)
∣∣p−1 + ∣∣un(x)

∣∣r−1

+ ∣∣un(x) + tnw(x)
∣∣r−1 + ∣∣vn(x) + tny(x)

∣∣(p−1)q/p + ∣∣vn(x)
∣∣(p−1)q/p)

+ ∣∣y(x)
∣∣(∣∣vn(x)

∣∣q−1 + ∣∣vn(x) + tny(x)
∣∣q−1 + ∣∣vn(x)

∣∣s−1

+ ∣∣vn(x) + tny(x)
∣∣s−1 + ∣∣un(x) + tnw(x)

∣∣(q−1)p/q + ∣∣un(x)
∣∣(q−1)p/q)]

.

The functiongn is measurable, and due to (7), it is nonnegative. Fatou’s lemma im
that

A =
∫

lim sup
n→∞

[−gn(x)
]
dx � lim sup

n→∞

∫ [−gn(x)
]
dx = B.
Ω Ω



194 A. Kristály / J. Math. Anal. Appl. 299 (2004) 186–204

for
s
als
t that
Let Dn = gn + Cn, where

Cn(x) = F(un(x) + tnw(x), vn(x) + tny(x)) − F(un(x), vn(x))

tn
.

By the Lebesgue dominated convergence theorem (using (8) and (9)), we have

lim
n→∞

∫
Ω

Dn dx = 2c3

∫
Ω

[|w|(|u|p−1 + |u|r−1 + |v|(p−1)q/p
)

+ |y|(|v|q−1 + |v|s−1 + |u|(q−1)p/q
)]

dx.

Therefore,

B = lim sup
n→∞

FE(un + tnw, vn + tny) −FE(un, vn)

tn
− lim

n→∞

∫
Ω

Dn dx

=F0
E(u, v;w,y) − 2c3

∫
Ω

[|w|(|u|p−1 + |u|r−1 + |v|(p−1)q/p
)

+ |y|(|v|q−1 + |v|s−1 + |u|(q−1)p/q
)]

dx.

On the other hand,A � A1 − A2, where

A1 =
∫
Ω

lim sup
n→∞

Cn(x) dx and A2 =
∫
Ω

lim inf
n→∞ Dn(x) dx.

By (8), we have

A2 = 2c3

∫
Ω

[|w|(|u|p−1 + |u|r−1 + |v|(p−1)q/p
)

+ |y|(|v|q−1 + |v|s−1 + |u|(q−1)p/q
)]

dx

while

A1 =
∫
Ω

lim sup
n→∞

F(un(x) + tnw(x), vn(x) + tny(x)) − F(un(x), vn(x))

tn
dx

�
∫
Ω

lim sup
(zu,zv,t)→(u(x),v(x),0+)

F (zu + tw(x), zv + ty(x)) − F(zu, zv)

t
dx

=
∫
Ω

F 0(u(x), v(x);w(x), y(x)
)
dx.

This completes the proof.�
Remark 5. We point out that, while the inequality given in Proposition 3 is proved
(subspaces of) the Sobolev spaceW

1,p
0 (Ω) × W

1,q
0 (Ω), under suitable growth condition

on the nonlinear termF, a similar inequality is known in the case of integral function
on theLp(Ω) × Lq(Ω) spaces, see [5, pp. 82–85]. We emphasize that in [5], the fac
Ω has finite measure plays an indispensable role.
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We have the following relation between the critical points ofH and the solutions o
(S′

p,q,Ω).

Proposition 4. Under the conditions of Proposition3, the functionH (from (6)) is well-
defined and locally Lipschitz onW1,p

0 (Ω) × W
1,q

0 (Ω). Moreover, every critical poin

(u, v) ∈ W
1,p
0 (Ω) × W

1,q
0 (Ω) of H is a solution of(S′

p,q,Ω).

Proof. Since the functionW1,α
0 (Ω) � u �→ 1

α
‖u‖α

1,α is of classC1 (α ∈ {p,q}), the first

part follows from Proposition 3. Now, we chooseEp = W
1,p

0 (Ω) andEq = W
1,q

0 (Ω) in

Proposition 3. Due to Proposition 1(i), for all(w,y) ∈ W
1,p
0 (Ω) × W

1,q
0 (Ω) we have

0 � H0(u, v;w,y)

=
∫
Ω

|∇u|p−2∇u∇w +
∫
Ω

|∇v|q−2∇v∇y + (−F)0(u, v;w,y)

=
∫
Ω

|∇u|p−2∇u∇w +
∫
Ω

|∇v|q−2∇v∇y +F0(u, v;−w,−y)

�
∫
Ω

|∇u|p−2∇u∇w +
∫
Ω

|∇v|q−2∇v∇y

+
∫
Ω

F 0(u(x), v(x);−w(x),−y(x)
)
dx.

By using Proposition 2(ii) and takingy = 0, respectivelyw = 0 in the above inequality
we obtain the corresponding inequalities from(S′

p,q,Ω). �
Remark 6. A natural question arises: Can the converse of the last part of Proposi
be proved, i.e., can one characterize the critical points ofH by means of the solutions o
(S′

p,q,Ω)? Unfortunately, it seems that this cannot be done. To see why, let us put our
within the assumptions of Proposition 4. Using Fatou’s lemma, a calculation similar to th
in the proof of Proposition 3 shows that

F0(u, v;w,y) =F ′(u, v;w,y) =
∫
Ω

F 0(u(x), v(x);w(x), y(x)
)
dx. (10)

(For a similar relation on domains with finite measure and suitable growth conditio
the termF , see [5, p. 85].) From (10), one has

H0(u, v;w,y) =
∫
Ω

|∇u|p−2∇u∇w +
∫
Ω

|∇v|q−2∇v∇y

+
∫

F 0(u(x), v(x);−w(x),−y(x)
)
dx. (11)
Ω
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If we were dealing with ascalar problem, where the nonlinear term isregular, then we
would be able to obtain a formula similar to (11). In such a case, an element woul
critical point for the corresponding functionalif and only if it would be a solution of the
studied problem. But, in ournonscalar case, the problem has a different behaviour. T
main difficulty is caused by the inequality from Proposition 2(ii), which may bestrict. In-
deed, let us consider for instanceF :R2 → R, defined byF(u, v) = max{|u|5/2, |v|5/2}.
It is clear thatF is regular onR

2 in the sense of Clarke and for everyα,β > 0,

F 0(α,α;β,β) = F 0
1 (α,α;β) = F 0

2 (α,α;β) = 5α3/2β/2.

Now, if we suppose that(u, v) is a solution of (S′
p,q,Ω), we cannot assert tha

H0(u, v;w,y) � 0 for all (w,y) ∈ W
1,p
0 (Ω) × W

1,q
0 (Ω), taking into account that th

inequality from Proposition 2(ii) may be strict. So, it seems we needmoreregularity onF,

not only the regularity in the sense of Clarke, in order to prove this implication. In
of the fact that formula (11) is more precisethan in the proof of Proposition 4, the latt
cannot be improved. This fact is another point where our approach differs from the
case.

4. The Cerami condition

Since the embeddingsW1,α
0 (Ω) ↪→ Lβ(Ω) for β ∈ [α,α∗] (α ∈ {p,q}) are not com-

pact, we introduce the action ofG = idm × O(N − m) onW
1,α
0 (Ω) as

gu(x, y) = u
(
x,g−1

0 y
)

for all (x, y) ∈ ω×R
N−m, g = idm ×g0 ∈ G andu ∈ W

1,α
0 (Ω) (α ∈ {p,q}). Moreover, the

actionG on W
1,α
0 (Ω) is isometric, that is‖gu‖1,α = ‖u‖1,α for all g ∈ G, u ∈ W

1,α
0 (Ω)

(α ∈ {p,q}). Let us denote by

W
1,α
0,G(Ω) = {

u ∈ W
1,α
0 (Ω): gu = u for all g ∈ G

} (
α ∈ {p,q}),

which is exactly the closed subspace of axially symmetric functions ofW
1,α
0 (Ω). The

embeddingsW1,α
0,G(Ω) ↪→ Lβ(Ω), α < β < α∗ (α ∈ {p,q}) are compact (see [10,17

and [9] forα = 2). In the sequel, we denote byFG andHG the restrictions ofF andH to
W

1,p

0,G(Ω) × W
1,q

0,G(Ω), respectively.

Proposition 5. Under the conditions of Theorem1, HG satisfies(C)c for all c > 0.

Proof. Let {(un, vn)} be a sequence fromW1,p

0,G(Ω) × W
1,q

0,G(Ω) such that

HG(un, vn) → c > 0, (12)(
1+ ∥∥(un, vn)

∥∥
1,p,q

)
λHG

(un, vn) → 0, (13)

asn → ∞. Since∂HG(un, vn) is w∗-compact, we can fixz∗
n ∈ ∂HG(un, vn) such that

λHG
(un, vn) = ‖z∗

n‖∗, where‖ · ‖∗ denotes the norm of the dual ofW
1,p

0,G(Ω) × W
1,q

0,G(Ω).

Moreover, we have
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d

, and
H0
G

(
un, vn; 1

p
un,

1

q
vn

)
�

〈
z∗
n,

(
1

p
un,

1

q
vn

)〉
W

1,p

0,G(Ω)×W
1,q

0,G(Ω)

� −(
1+ ∥∥(un, vn)

∥∥
1,p,q

)∥∥z∗
n

∥∥∗.

Applying Proposition 3 withEp = W
1,p

0,G(Ω) andEq = W
1,q

0,G(Ω), and using (12), (13) an
(3), one has forn large enough that

c + 1 � HG(un, vn) −H0
G

(
un, vn; 1

p
un,

1

q
vn

)

= −FG(un, vn) − (−FG)0
(

un, vn; 1

p
un,

1

q
vn

)

= −FG(un, vn) −F0
G

(
un, vn;− 1

p
un,− 1

q
vn

)

� −
∫
Ω

[
F(un, vn) + F 0

(
un(x), vn(x);− 1

p
un(x),− 1

q
vn(x)

)]
dx

� −
∫
Ω

[
F(un, vn) + 1

p
F 0

1

(
un(x), vn(x);−un(x)

)

+ 1

q
F 0

2

(
un(x), vn(x);−vn(x)

)]
dx � c2

∫
Ω

[|un|µ + |vn|ν
]
dx.

From the previous inequality we obtain that{
(un, vn)

}
is bounded inLµ(Ω) × Lν(Ω). (14)

By (F4) we have that for allε > 0 there existsδ(ε) > 0 such that if|u|p−1 + |v|(p−1)q/p <

δ(ε) then

|wu| < ε
(|u|p−1 + |v|(p−1)q/p

)
for all wu ∈ ∂1F(u, v).

If |u|p−1 + |v|(p−1)q/p � δ(ε), by using (1), we have

|wu| � c1
[(|u|p−1 + |v|(p−1)q/p

)(r−1)/(p−1)(
δ(ε)

)(p−r)/(p−1) + |u|r−1]
� c(ε)

(|u|r−1 + |v|(r−1)q/p
)
.

Combining the above relations, we have that for allε > 0 there existsc1(ε) > 0 such that

|wu| < ε
(|u|p−1 + |v|(p−1)q/p

) + c1(ε)
(|u|r−1 + |v|(r−1)q/p

)
(15)

for all (u, v) ∈ R
2 andwu ∈ ∂1F(u, v). A similar calculation shows that for allε > 0 there

existsc2(ε) > 0 such that

|wv| < ε
(|v|q−1 + |u|(q−1)p/q

) + c2(ε)
(|v|s−1 + |u|(s−1)p/q

)
(16)

for all (u, v) ∈ R
2 andwv ∈ ∂2F(u, v).

Similarly as in (7), but using (15) and (16) instead of (1) and (2), respectively
keeping in mind thatF(0,0) = 0, for all ε > 0 there existsc(ε) = c(c1(ε), c2(ε)) > 0 such
that
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we
F(u, v) � ε
(|u|p + |v|(p−1)q/p|u| + |v|q + |u|(q−1)p/q|v|)
+ c(ε)

(|u|r + |v|(r−1)q/p|u| + |v|s + |u|(s−1)p/q|v|) (17)

for all (u, v) ∈ R
2.

After integration and using relationps = qr, by Young’s and Holder’s inequalities we
obtain

FG(un, vn) � ε

[(
2+ 1

p
− 1

q

)
‖un‖p

p +
(

2+ 1

q
− 1

p

)
‖vn‖q

q

]

+ c(ε)

[(
2+ 1

r
− 1

s

)
‖un‖r

r +
(

2+ 1

s
− 1

r

)
‖vn‖s

s

]
.

Therefore, due to (6), one has[
1

p
− ε

(
2+ 1

p
− 1

q

)
c
p
p,p

]
‖un‖p

1,p +
[

1

q
− ε

(
2+ 1

q
− 1

p

)
c
q
q,q

]
‖vn‖q

1,q

� HG(un, vn) + c(ε)

[(
2+ 1

r
− 1

s

)
‖un‖r

r +
(

2+ 1

s
− 1

r

)
‖vn‖s

s

]
.

Choosing

0 < ε <
1

3
min

{
1

pc
p
p,p

,
1

qc
q
q,q

}
, (18)

we findc3(ε), c4(ε) > 0 such that

c3(ε)
(‖un‖p

1,p + ‖vn‖q

1,q

)
� c + 1+ c4(ε)

(‖un‖r
r + ‖vn‖s

s

)
(19)

for n large enough. Now, we will examine the behaviour of the sequences{‖un‖r
r } and

{‖vn‖s
s}, respectively. To this end, we first observe thatµ � r andν � s. Indeed, keeping

in mind relationps = qr, letting w = y = 0 andu := ut1/p, v := vt1/q (t > 1) in (7),
from (30) below yield the required relations.

We distinguish two cases.
(I) µ = r. From (14) we have that{‖un‖r

r } is bounded.
(II) µ ∈ ]max{p,N(r − p)/p}, r[. We have the interpolation inequality

‖u‖r � ‖u‖1−δ
µ ‖u‖δ

p∗ for all u ∈ Lµ(Ω) ∩ Lp∗
(Ω)

with

δ = p∗

r

r − µ

p∗ − µ
.

From (14) and the continuous embeddingW
1,p

0,G(Ω) ⊂ W
1,p

0 (Ω) ↪→ Lp∗
(Ω), we have

c5 > 0 such that‖un‖r
r � c5‖un‖δr

1,p, with δr < p.

Taking into consideration the similar relations for the sequence{‖vn‖s
s}, we can con-

clude from (19) that the sequences{‖un‖1,p} and{‖vn‖1,q} are bounded. Since the em

beddingsW1,p

0,G(Ω) ↪→ Lr(Ω), W1,q

0,G(Ω) ↪→ Ls(Ω) are compact, up to a subsequence,
have
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(un, vn) → (u, v) weakly inW
1,p
0,G(Ω) × W

1,q
0,G(Ω), (20)

un → u strongly inLr(Ω), (21)

vn → v strongly inLs(Ω). (22)

Moreover, we have

H0
G(un, vn;u − un, v − vn)

=
∫
Ω

|∇un|p−2∇un(∇u − ∇un) +
∫
Ω

|∇vn|q−2∇vn(∇v − ∇vn)

+ (−FG)0(un, vn;u − un, v − vn)

and

H0
G(u, v;un − u,vn − v)

=
∫
Ω

|∇u|p−2∇u(∇un − ∇u) +
∫
Ω

|∇v|q−2∇v(∇vn − ∇v)

+ (−FG)0(u, v;un − u,vn − v).

Adding the above two relations, we obtain

Jn :=
∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u
)
(∇un − ∇u)

+
∫
Ω

(|∇vn|q−2∇vn − |∇v|q−2∇v
)
(∇vn − ∇v) = J 1

n − J 2
n − J 3

n , (23)

where

J 1
n =F0

G(un, vn;un − u,vn − v) +F0
G(u, v;u − un, v − vn),

J 2
n =H0

G(un, vn;u − un, v − vn)

and

J 3
n =H0

G(u, v;un − u,vn − v).

In the sequel, we will estimateJ i
n (i ∈ {1,2,3}). Using Proposition 3, (15), (16) andps =

qr, one has

J 1
n �

∫
Ω

[
F 0(un(x), vn(x);un(x) − u(x), vn(x) − v(x)

)

+ F 0(u(x), v(x);u(x) − un(x), v(x) − vn(x)
)]

dx

�
∫
Ω

[∣∣F 0
1

(
un(x), vn(x);un(x) − u(x)

)∣∣ + ∣∣F 0
2

(
un(x), vn(x); vn(x) − v(x)

)∣∣
+ ∣∣F 0

1

(
u(x), v(x);u(x) − un(x)

)∣∣ + ∣∣F 0
2

(
u(x), v(x); v(x) − vn(x)

)∣∣]dx
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the
=
∫
Ω

∣∣∣max
{
w1

n(x)
(
un(x) − u(x)

)
: w1

n(x) ∈ ∂1F
(
un(x), vn(x)

)}∣∣∣dx

+
∫
Ω

∣∣∣max
{
w2

n(x)
(
vn(x) − v(x)

)
: w2

n(x) ∈ ∂2F
(
un(x), vn(x)

)}∣∣∣dx

+
∫
Ω

∣∣∣max
{
w1(x)

(
u(x) − un(x)

)
: w1(x) ∈ ∂1F

(
u(x), v(x)

)}∣∣∣dx

+
∫
Ω

∣∣∣max
{
w2(x)

(
v(x) − vn(x)

)
: w2(x) ∈ ∂2F

(
u(x), v(x)

)}∣∣∣dx

� ε
[(‖un‖p−1

p + ‖u‖p−1
p + ‖vn‖(p−1)q/p

q + ‖v‖(p−1)q/p
q

)‖u − un‖p

+ (‖vn‖q−1
q + ‖v‖q−1

q + ‖un‖(q−1)p/q
p + ‖u‖(q−1)p/q

p

)‖v − vn‖q

]
+ c1(ε)

(‖un‖r−1
r + ‖u‖r−1

r + ‖vn‖(r−1)s/r
s + ‖v‖(r−1)s/r

s

)‖u − un‖r

+ c2(ε)
(‖vn‖s−1

s + ‖v‖s−1
s + ‖un‖(s−1)r/s

r + ‖u‖(s−1)r/s
r

)‖v − vn‖s .

Since the sequences{un} and {vn} are bounded inW1,p

0,G(Ω) (↪→ Lp(Ω) ∩ Lr(Ω)) and

W
1,q

0,G(Ω) (↪→ Lq(Ω) ∩ Ls(Ω)), respectively, and using relations (21) and (22), from
arbitrariness ofε > 0 one has

lim sup
n→∞

J 1
n � 0. (24)

Since

J 2
n �

〈
z∗
n, (u − un, v − vn)

〉
W

1,p
0,G(Ω)×W

1,q
0,G(Ω)

� −∥∥z∗
n

∥∥∗
(‖u − un‖1,p + ‖v − vn‖1,q

)
,

due to (13), we have

lim inf
n→∞ J 2

n � 0. (25)

Now, we fix an elementz∗ ∈ ∂HG(u, v). Clearly,

J 3
n �

〈
z∗, (un − u,vn − v)

〉
W

1,p
0,G(Ω)×W

1,q
0,G(Ω)

and from (20) we have

lim inf
n→∞ J 3

n � 0. (26)

Therefore, from relations (23)–(26) we obtain

lim sup
n→∞

Jn � 0. (27)

On the other hand, from the inequality

|t − s|α �
{

(|t|α−2t − |s|α−2s)(t − s), if α � 2,

α−2 α−2 α/2 α α (2−α)/2
((|t| t − |s| s)(t − s)) (|t| + |s| ) , if 1 < α < 2,
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t

for all t, s ∈ R
N (see [16]) and (27), we obtain that

lim
n→∞

∫
Ω

(|∇un − ∇u|p + |∇vn − ∇v|q) = 0,

that is, the sequences{un} and{vn} are strongly convergent inW1,p

0,G(Ω) andW
1,q

0,G(Ω),

respectively. �

5. Mountain pass geometry

Proposition 6. Under the conditions of Theorem1, there existη,ρ > 0 and (ep, eq) ∈
W

1,p

0,G(Ω) × W
1,q

0,G(Ω) such that for all(u, v) ∈ W
1,p

0,G(Ω) × W
1,q

0,G(Ω)

HG(u, v) � η with
∥∥(u, v)

∥∥
1,p,q

= ρ, (28)

and ∥∥(ep, eq)
∥∥

1,p,q
> ρ, HG(ep, eq) � 0. (29)

Proof. By using (17), we obtain

HG(u, v) = 1

p
‖u‖p

1,p + 1

q
‖v‖q

1,q −
∫
Ω

F(u, v) dx

�
[

1

p
− ε

(
2+ 1

p
− 1

q

)
c
p
p,p

]
‖u‖p

1,p +
[

1

q
− ε

(
2+ 1

q
− 1

p

)
c
q
q,q

]
‖v‖q

1,q

− c(ε)

[(
2+ 1

r
− 1

s

)
‖u‖r

r +
(

2+ 1

s
− 1

r

)
‖v‖s

s

]
.

Choosingε as in (18), we can fixc5(ε), c6(ε) > 0 such that

HG(u, v) � c5(ε)
(‖u‖p

1,p + ‖v‖q

1,q

) − c6(ε)
(‖u‖r

1,p + ‖v‖s
1,q

)
.

Since the functiont �→ (xt + yt )1/t , t > 0, is nonincreasing (x, y � 0), using againps =
qr, we have

‖u‖r
1,p + ‖v‖s

1,q �
[‖u‖p

1,p + ‖v‖q

1,q

]r/p(=s/q)
.

Therefore,

HG(u, v) �
[
c5(ε) − c6(ε)

(‖u‖p

1,p + ‖v‖q

1,q

)r/p−1](‖u‖p

1,p + ‖v‖q

1,q

)
.

Let 0< ρ < 1 and denote

Bρ = {
(u, v) ∈ W

1,p

0,G(Ω) × W
1,q

0,G(Ω):
∥∥(u, v)

∥∥
1,p,q

= ρ
}
.

Then, we have(ρ/2)max{p,q} � ‖u‖p

1,p + ‖v‖q

1,q � ρ for all (u, v) ∈ Bρ. Choosingρ small
enough, there existsη > 0 such thatHG(u, v) � η for all (u, v) ∈ Bρ, due to the fact tha
r > p. This is exactly the relation (28).
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n

To prove (29), we fix arbitrary an element(u, v) ∈ R
2. We define the function

g : ]0,∞[ → R by

g(t) = t−1F(t1/pu, t1/qv) − c2
p

µ − p
tµ/p−1|u|µ − c2

q

ν − q
tν/q−1|v|ν .

Sinceg is locally Lipschitz, due to Lebourg’s mean value theorem, for a fixedt > 1 there
existsτ = τ (t, u, v) ∈ ]1, t[ such that

g(t) − g(1) ∈ ∂tg(τ )(t − 1),

where∂t stands for the generalized gradient with respect tot ∈ R. From the Second Chai
Rule and Proposition 2(i), we have

∂tF (t1/pu, t1/qv) ⊆ 1

p
∂1F(t1/pu, t1/qv)t1/p−1u + 1

q
∂2F(t1/pu, t1/qv)t1/q−1v.

Hence, by Proposition 1(iii) one has

∂tg(t) ⊆ −t−2F(t1/pu, t1/qv)

+ t−1
[

1

p
∂1F(t1/pu, t1/qv)t1/p−1u + 1

q
∂2F(t1/pu, t1/qv)t1/q−1v

]
− c2

[
tµ/p−2|u|µ + tν/q−2|v|ν].

Let wτ ∈ ∂tg(τ ) such thatg(t) − g(1) = wτ (t − 1). There existwτ
i ∈ ∂iF (τ1/pu, τ1/qv)

(i ∈ {1,2}) such that

g(t) − g(1) = −τ−2
[
F(τ1/pu, τ1/qv) + 1

p
wτ

1(−τ1/pu) + 1

q
wτ

2(−τ1/qv)

+ c2
(|τ1/pu|µ + |τ1/qv|ν)](t − 1)

� −τ−2
[
F(τ1/pu, τ1/qv) + 1

p
F 0

1 (τ1/pu, τ1/qv;−τ1/pu)

+ 1

q
F 0

2 (τ1/pu, τ1/qv;−τ1/qv) + c2
(|τ1/pu|µ + |τ1/qv|ν)](t − 1).

Due to (3), we haveg(t) � g(1). Thus,

F(t1/pu, t1/qv) � tF (u, v) + c2

[
p

µ − p
(tµ/p − t)|u|µ + q

ν − q
(tν/q − t)|v|ν

]
(30)

for all t > 1 and(u, v) ∈ R
2.

Now, fix u0
p ∈ W

1,p

0,G(Ω) andv0
q ∈ W

1,q

0,G(Ω) such that‖u0
p‖1,p = ‖v0

q‖1,q = 1. Then, for
everyt > 1 we have

HG

(
t1/pu0

p, t1/qv0
q

) =
(

1

p
+ 1

q

)
t −

∫
Ω

F
(
t1/pu0

p, t1/qv0
q

)
dx

�
(

1

p
+ 1

q
−

∫
F

(
u0

p, v0
q

)
dx

)
t

Ω
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y

pa-

ally
[15]).
− c2

[
p

µ − p
(tµ/p − t)

∥∥u0
p

∥∥µ

µ
+ q

ν − q
(tν/q − t)

∥∥v0
q

∥∥ν

ν

]
.

Due to Sobolev embeddings,‖u0
p‖µ �= 0 �= ‖v0

q‖ν . Therefore,HG(t1/pu0
p, t1/qv0

q) → −∞
as t → ∞ (recall thatµ > p andν > q). Choosingt = t0 large enough and denoting b
ep = t

1/p

0 u0
p andeq = t

1/q

0 v0
q, we are led to (29). This completes the proof.�

6. Proof of Theorem 1

We recall a version of the Mountain Pass Theorem, proved by Kourogenis and Pa
georgiou [13, Theorem 6].

Proposition 7. Let X be a Banach space,h :X → R be a locally Lipschitz function with
h(0) = 0. Suppose that there exist an elemente ∈ X and constantsρ,η > 0 such that

(i) h(u) � η for all u ∈ X with ‖u‖ = ρ;
(ii) ‖e‖ > ρ andh(e) � 0;
(iii) h satisfies(C)c, with c = infγ∈Γ maxt∈[0,1] h(γ (t)), whereΓ = {γ ∈ C([0,1],X):

γ (0) = 0, γ (1) = e}.

Thenc � η andc ∈ R is a critical value ofh.

Proof of Theorem 1 completed. Let us chooseX = W
1,p

0,G(Ω) × W
1,q

0,G(Ω) andh = HG

in Proposition 7. Conditions (i) and (ii) are verified due to Proposition 6. Definingce ∈ R

as in Proposition 7 for the elemente = (ep, eq) (ep, eq from Proposition 6), we havece �
η > 0. By Proposition 5,HG satisfies(C)ce . Hence, there exists a critical point(u0, v0) ∈
W

1,p

0,G(Ω) × W
1,q

0,G(Ω) of HG, the critical valuece = HG(u0, v0) being strictly positive.
SinceHG(0,0) = 0, (u0, v0) cannot be(0,0).

On the other hand, the actionG onW
1,p

0 (Ω) × W
1,q

0 (Ω) can be defined by

g(u, v) = (gu,gv) for all g ∈ G, (u, v) ∈ W
1,p

0 (Ω) × W
1,q

0 (Ω).

Moreover,G acts isometrically onW1,p

0 (Ω) × W
1,q

0 (Ω) andH is G-invariant, that is∥∥g(u, v)
∥∥

1,p,q
= ∥∥(u, v)

∥∥
1,p,q

and H
(
g(u, v)

) =H(u, v)

for all g ∈ G, (u, v) ∈ W
1,p

0 (Ω) × W
1,q

0 (Ω).

Now, we are in the position to apply the Principle of Symmetric Criticality for loc
Lipschitz functions, proved by Krawcewicz and Marzantowicz [14, p. 1045] (see also
This means that the critical point(u0, v0) ∈ W

1,p

0,G(Ω) × W
1,q

0,G(Ω) of HG will be a critical

point ofH on the whole spaceW1,p

0 (Ω) × W
1,q

0 (Ω), due to the fact that

W
1,p

0,G(Ω) × W
1,q

0,G(Ω) = {
(u, v) ∈ W

1,p

0 (Ω) × W
1,q

0 (Ω):

g(u, v) = (u, v) for all g ∈ G
}
.

Therefore, it remains to apply Proposition 4.�
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