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Abstract

In this paper, we prove two set-valued versions of Ky Fan’s minimax inequality. From
results, versions of Schauder’s and Kakutani’s fixed point theorems can be deduced. We form
variational inclusion problem for set-valued maps and a differential inclusion problem, conce
the contingent derivative. Sufficient conditions for the existence of solution for these incl
problems are obtained, generalizing classical variational inequality problems.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

LetX be a real normed space,K1,K2⊂X two nonempty sets andϕ :K1×K2→R a
given function. An important problem in the nonlinear analysis is the so-calledequilibrium
problem,i.e., find an element̄x ∈K1 such that

ϕ(x̄, y)� 0, ∀y ∈K2. (EP)

The most familiar existence result in this direction is the Ky Fan minimax inequ
see [5].

Theorem 1.1.LetK be a nonempty convex, compact subset ofX andϕ :K ×K→ R a
function satisfying
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(i) ∀y ∈K, x→ ϕ(x, y) is usc onK;
(ii) ∀x ∈K, y→ ϕ(x, y) is quasiconvex onK;
(iii) ∀y ∈K, ϕ(y, y)� 0.

Then, there exists an elementx̄ ∈K such that

ϕ(x̄, y)� 0, ∀y ∈K.

This result has many applications in various branches of mathematics: mathem
economy, game theory, fixed point theorems, variational inequalities, etc.

In [3], Browder studies a particular case of the above general equilibrium problem(EP).
More precisely, he poses the followingvariational inequalityproblem: find an elemen
x̄ ∈K such that

T (x̄)(y − x̄)� 0, ∀y ∈K,
whereK is a convex subset of a topological vector spaceE, T :K→ E∗ is a continuous
operator,E∗ the dual ofE.

The above variational inequality can be written in the following form:

T (x̄)(x̄ − y)∩R− 
= ∅, ∀y ∈K. (VI)

The aim of our paper is two-fold. First, we state a similar result in set-valued conte
(VI), i.e., we formulate aset-valued variational inclusionproblem, guaranteeing a solutio
for this. More precisely, letT :K � X∗ be a set-valued map. The problem is: find
elementx ∈K such that

T (x)(x − y)∩R− 
= ∅, ∀y ∈K. (SVVI)

Secondly, ifT = ∇f , f being continuously differentiable onX, we have a particula
variational inequality problem: find an elementx ∈K such that

∇f (x)(y − x)� 0, ∀y ∈K. (PVI)

But in several problems the functionf is not differentiable and perhaps is not sing
valued. Let us consider the following set-valued mapF0 : R�R defined by

F0(x)=
{ {1}, x < 0,
{−1,1}, x = 0,
{−1}, x > 0,

andK0 = [−1,1]. Clearly, forF0 andK0 we haven’t a classical variational inequal
problem, like(PVI).

Therefore, it’s natural to pose the followingdifferential inclusionproblem: letF :X�
R be a set-valued map with compact, nonempty values,X being a normed space,K ⊂X
nonempty convex subset ofX. Find x̄ ∈K such that

DF
(
x,minF(x̄)

)
(u− x̄)⊆R+, ∀u ∈K, (DI)

whereDF(x,y) is the contingent derivative at(x, y) ∈ Graph(F ), see Section 4. In
particular, if F(x) = {f (x)} is a single-valued continuously differentiable function
X, then the above differential inclusion problem reduces to(PVI), sinceDF(x, f (x)) =
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∇f (x). In the above inclusion, the left-hand side may be empty for some elementu. In
this case (as convention), the inclusion will be considered trivial. For the above set-v
mapF0, an easy calculation shows that every element from the intervalK0 = [−1,1] is
solution for the corresponding(DI).

To solve the above problems, we need set-valued versions of Ky Fan-type resu
this, we formulate twoset-valued equilibrium problems. Let F :K × K � R be a set-
valued map. Findx1 ∈K resp.x2 ∈K such that

F(x1, y)⊆R+, ∀y ∈K, (SVEP1)

resp.

F(x2, y)∩R− 
= ∅, ∀y ∈K. (SVEP2)

The main purpose of Section 2 is to present existence results for(SVEP1) and(SVEP2).
It will be pointed out that from our main result of this section (Theorem 2.1) we can de
a special form of the Ky Fan’s minimax inequality (Corollary 2.1), remarking that
result does not cover the complete generality of the single-valued case. In the third s
we give simple proofs for versions of Schauder’s and Kakutani’s fixed point theorem
the last section, we give sufficient conditions to guarantee the existence of solutio
(SVVI) and(DI); in particular, containing a result of Browder’s type, see [3].

2. Set-valued versions of Ky Fan’s inequality

Let Z andY be metric spaces,F :Z� Y be a set-valued map with nonempty valu
We define the graph of the functionF by

Graph(F )= {(z, y) ∈Z × Y | y ∈ F(z)}.
We say that the set-valued mapF :Z� Y is upper semicontinuous atz ∈ Z (usc atz) if
and only if for any neighborhoodU of F(z), ∃η > 0 such that for everyz′ ∈ BZ(z, η) we
haveF(z′)⊂ U . The set-valued functionF :Z� Y is lower semicontinuous atz ∈ Z (lsc
atz) if and only if for anyy ∈ F(z) and for any sequence of elements(zn) in Z converging
to z, there exists a sequence of elementsyn ∈ F(zn) converging toy.

The set-valued functionF is upper (resp.lower) semicontinuous onZ if F is upper
(resp. lower) semicontinuous at every pointz ∈Z.

We shall say that the set-valued mapF is continuousat z if it is both usc and lsc atz,
and that it is continuous onZ if and only if it is continuous at every point ofZ.

LetM be a subset ofY . We denote

F−1(M)= {z ∈Z | F(z)∩M 
= ∅},
F+1(M)= {z ∈Z | F(z)⊆M}.

The subsetF−1(M) is called theinverse imageofM by F andF+1(M) is called thecore
ofM by F .

We need the following characterization of the upper (resp. lower) semicontinuity oF .
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Proposition 2.1[1, Proposition 1.4.4].A set-valued mapF :Z� Y with nonempty value
is upper semicontinuous onZ if and only if the inverse image of any closed subset is clo
and is lower semicontinuous onZ if and only if the core of any closed subset is closed

LetK be a convex subset of a vector spaceX andF :X�R a set-valued code.
We say thatF is convex onK (resp.concave onK), see [1, p. 57], if and only i

∀x1, x2 ∈K andλ ∈ [0,1],
λF(x1)+ (1− λ)F (x2)⊆ (resp. ⊇)F (λx1+ (1− λ)x2

)
.

Remark 2.1. F is convex onK (resp. concave onK) if and only if for all n � 2 and
λ1, λ2, . . . , λn � 0 such that

∑n
i=1λi = 1 and for allx1, x2, . . . , xn ∈K,

n∑
i=1

λiF (xi)⊆ (resp.⊇)F
(

n∑
i=1

λixi

)
.

We use the intersection theorem due to Ky Fan, known in the literature as Ky
lemma.

Lemma 2.1[4]. LetX be a Hausdorff topological vector space,K a subset ofX and for
eachx ∈K, let S(x) be a closed subset ofX such that

(i) there existsx0 ∈K such that the setS(x0) is compact;
(ii) for eachx1, x2, . . . , xn ∈K, co{x1, x2, . . . , xn} ⊆⋃n

i=1S(xi).

Then ⋂
x∈K

S(x) 
= ∅.

The main result of this section can be formulated as follows.

Theorem 2.1.LetX be a real normed space,K a nonempty convex, compact subset oX
andF :K ×K�R a set-valued map satisfying

(i) ∀y ∈K, x� F(x, y) is lsc onK;
(ii) ∀x ∈K, y� F(x, y) is convex onK;
(iii) ∀y ∈K, F(y, y)⊆R+.

Then, there exists an elementx ∈K such that

F(x, y)⊆ R+, ∀y ∈K, (2.1)

i.e.,x is a solution for(SVEP1).

Proof. For ally ∈K, letSy = {x ∈K | F(x, y)⊆R+}. In order to prove relation (2.1) it’
enough to prove that

⋂
y∈K Sy 
= ∅. From (iii) it follows thatSy 
= ∅, (y ∈ Sy). From (i)
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and Proposition 2.1, the setsSy are closed for ally ∈ K, and sinceK is supposed to
be compact, they are compact, too. Therefore (i) from Lemma 2.1 is satisfied. We
show that for ally1, y2, . . . , yn ∈K, co{y1, y2, . . . , yn} ⊆⋃n

i=1Syi . Indeed, supposing th
contrary, there existy1, y2, . . . , yn ∈K andλ1, λ2, . . . , λn � 0,

∑n
i=1λi = 1 such that

n∑
i=1

λiyi /∈ Syi , ∀i = 1, n. (2.2)

Let I = {i ∈ {1,2, . . . , n} | λi > 0}. Of course, I 
= ∅. From (2.2) we have tha
F(
∑n
i=1λiyi, yi)� R+, ∀i = 1, n. From this, we get

λiF

(∑
i∈I
λiyi, yi

)
∩R∗− 
= ∅, ∀i ∈ I. (2.3)

Using (ii), (iii) and (2.3) we obtain

∅ 
=
{∑
i∈I
λiF

(∑
i∈I
λiyi, yi

)}
∩R∗− ⊆ F

(∑
i∈I
λiyi,

∑
i∈I
λiyi

)

∩R∗− ⊆R+ ∩R∗− = ∅.
This contradiction shows that (ii) from Lemma 2.1 holds. Therefore

⋂
y∈K Sy 
= ∅, i.e.,

there exists an elementx ∈K such thatF(x, y)⊆R+, ∀y ∈K. ✷
Remark 2.2.The above theorem remains true for any Hausdorff topological vector s

In an analogous way, we can obtain the “dual” of the above result. For the sa
completeness, we give the proof.

Theorem 2.2.LetX, K andF as above, satisfying

(i) ∀y ∈K, x� F(x, y) is usc onK;
(ii) ∀x ∈K, y� F(x, y) is concave onK;
(iii) ∀y ∈K, F(y, y)∩R− 
= ∅.

Then, there exists an elementx ∈K such that

F(x, y)∩R− 
= ∅, ∀y ∈K, (2.4)

i.e.,x is a solution for(SVEP2).

Proof. For all y ∈ K, let Sy = {x ∈K | F(x, y) ∩R− 
= ∅}. We apply again Lemma 2.1
From (iii) it follows that Sy 
= ∅ (y ∈ Sy). From (i) and Proposition 2.1, the setsSy are
closed for ally ∈ K, and sinceK is supposed to be compact, they are compact,
Therefore (i) from Lemma 2.1 is satisfied. We shall show that for ally1, y2, . . . , yn ∈ K,
co{y1, y2, . . . , yn} ⊆⋃n

i=1Syi . Supposing the contrary, there existy1, y2, . . . , yn ∈K and
λ1, λ2, . . . , λn � 0,

∑n
i=1λi = 1 such that

n∑
λiyi /∈ Syi , ∀i = 1, n. (2.5)
i=1
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Let I = {i ∈ {1,2, . . . , n} | λi > 0}. Of course, I 
= ∅. From (2.5) we have tha
F(
∑n
i=1λiyi, yi)⊆R∗+, ∀i = 1, n. From this, we have

λiF

(∑
i∈I
λiyi, yi

)
⊆R∗+, ∀i ∈ I. (2.6)

Using (ii) and (2.6) we obtain

F

(∑
i∈I
λiyi,

∑
i∈I
λiyi

)
⊆
∑
i∈I
λiF

(∑
i∈I
λiyi, yi

)
⊆R∗+,

which contradicts (iii). This completes the proof.✷
Lemma 2.2.LetX be a normed space,K ⊂ X andf :K→ R. We define the set-value
mapF :K�R byF(x)= [f (x),∞). Then

(i) if f is continuous onK thenF is continuous onK;
(ii) if K is convex andf is convex onK, so isF onK;
(iii) if K is convex andf is concave onK thenF is concave onK.

As a first application, from Theorem 2.1 we obtain a special case of the Ky
minimax inequality.

Corollary 2.1. LetX be a real normed space,K a nonempty convex, compact subset oX
andf :K ×K→R a function satisfying

(i) ∀y ∈K, x→ f (x, y) is continuous onK;
(ii) ∀x ∈K, y→ f (x, y) is convex onK;
(iii) ∀y ∈K, f (y, y)� 0.

Then, there exists an elementx ∈K such that

f (x, y)� 0, ∀y ∈K.

Proof. It’s easy to verify that the functionF :K × K � R defined byF(x, y) =
[f (x, y),∞) satisfies the hypotheses from Theorem 2.1, using Lemma 2.2. Ther
there existsx ∈ K such thatF(x, y)⊆ R+, ∀y ∈ K. From this, we have necessarily th
f (x, y)� 0,∀y ∈K. ✷

The compactness ofK in Theorem 2.1 and Theorem 2.2 is a rather restrictive condi
In the classical theory this condition can be weakened by assuming a so-calledcoercivity
condition, see [2], due to Brézis, Nirenberg and Stampacchia. We give a set-valued v
of their result.

Theorem 2.3.LetX be a real normed space,K a nonempty convex, closed subset oX
andF :K ×K�R a set-valued map satisfying
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(i) ∀y ∈K, x� F(x, y) is lsc onK;
(ii) ∀x ∈K, y� F(x, y) is convex onK;
(iii) ∀y ∈K, F(y, y)⊆R+;
(iv) there exist a compact setK0⊂X and an elementy0 ∈K ∩K0 such that

F(x, y0)∩R∗− 
= ∅, ∀x ∈K \K0. (2.7)

Then, there exists an elementx ∈K ∩K0 such that

F(x, y)⊆ R+, ∀y ∈K
i.e.,x is a solution for(SVEP1).

Proof. It’s similar to the proof of Theorem 2.1. For ally ∈K, letSy = {x ∈K | F(x, y)⊆
R+}. We prove thatSy0 ⊆ K0. Indeed, supposing the contrary, there exists an elem
z ∈ Sy0 such thatz /∈K0. From the definition ofSy0 we have thatF(z, y0)⊆ R+ which is
in contradiction with the relation (2.7). Therefore,Sy0 ⊆K0 and sinceK0 is compact,Sy0

is compact, too. The rest of the proof is the same as in Theorem 2.1.✷

3. Application to fixed point theorems

From Theorem 2.2 we can deduce directly a version of Schauder fixed point the
and in particular the Brouwer fixed point theorem.

Corollary 3.1. Let K be a convex compact subset of a real normed space andf :K→K

a continuous function. Thenf has a fixed point.

Proof. Let F :K ×K � R be the set-valued map defined byF(x, y)=−‖y − f (x)‖ +
‖x − f (x)‖+ [0,∞). We verify (i)–(iii) from Theorem 2.2.

(i) and (ii) follow from Lemma 2.2, using the concavity ofy �→ −‖y − f (x)‖ for all
x ∈K. For (iii), we have{−∥∥y − f (y)∥∥+ ∥∥y − f (y)∥∥+ [0,∞)}∩R− = {0} 
= ∅, ∀y ∈K.

Therefore, there existsx ∈K, such that{−∥∥y − f (x)∥∥+ ∥∥x − f (x)∥∥+ [0,∞)}∩R− 
= ∅, ∀y ∈K.
We have necessarily that−‖y − f (x)‖ + ‖x − f (x)‖ � 0,∀y ∈ K. Let y := f (x)(∈ K)
and we get‖x − f (x)‖� 0, i.e.,x = f (x). ✷

If M is a subset of a normed spaceX, andx ∈ X then we denote by dist(x,M) =
inf{‖x − y‖ |y ∈M}.

Now we deduce a special form of Kakutani’s fixed point theorem from Theorem
First, we need the following result, which is known in the literature as Maximum Theo
Let us consider the set-valued mapF :Z� Y , Z andY being metric spaces and a functi
f : Graph(F )→R. We define themarginal functiong :Z→R∪ {+∞} by

g(x)= sup f (x, y).

y∈F(x)
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Lemma 3.1[1, Theorem 1.4.16, p. 48].LetF :Z� Y be a set-valued map and a functi
f : Graph(F )→R. Then

(i) if f andF are lsc, so is the marginal function;
(ii) if f andF are usc and if the values ofF are compact, so is the marginal function.

Theorem 3.1. Let X be a normed space,K be a convex, compact subset ofX and
G :K� X be a continuous set-valued map onK with nonempty compact convex valu
If K ⊆G−1(K) thenG has a fixed pointx ∈K ∩G(x).

Proof. We define the set-valued mapF :K ×K�R by

F(x, y)= dist
(
y,G(x)

)− dist
(
x,G(x)

)+ [0,∞).
Applying Lemma 3.1 forf (x, y)= −‖x − y‖, Z := K, Y := X andF :=G, we obtain
that g(x) = −dist(x,G(x)) is continuous onK. The continuity of the functionx �→
dist(y,G(x)) for y fixed, can be proved analogously, adapting the proof of the prev
Lemma 3.1, see [1]. Using Lemma 2.2(i) we deduce thatx� F(x, y) is lsc onK for all
y ∈ K. Sincey �→ dist(y,G(x)) is convex function for allx ∈ K, using Lemma 2.2(ii)
we obtain thaty� F(x, y) is convex for allx ∈K. Moreover,F(y, y)= R+. Therefore,
from Theorem 2.1 we havex ∈K such that dist(y,G(x))− dist(x,G(x))+ [0,∞)⊆R+,
∀y ∈K. From this, we obtain that

dist
(
y,G(x)

)− dist
(
x,G(x)

)
� 0, ∀y ∈K. (3.1)

SinceK ⊆ G−1(K), i.e., for all x ∈ K, G(x) ∩K 
= ∅, we may choose an elementy ∈
G(x)∩K. Substituting in (3.1), we obtain that dist(x,G(x))� 0. Thereforex ∈G(x). ✷
Remark 3.1. The Kakutani’s fixed point theorem is a natural set-valued versio
Brouwer’s fixed point theorem. Of course, we can deduce the latter one from the pr
theorem.

4. Application to variational inclusion theory

LetX be a real normed space,K be a subset ofX andT :K�X∗ be a set-valued map
We haveT (x)(y)=⋃x∗∈T (x) x∗(y).

The main result of this section is

Theorem 4.1.Let K be a convex, compact subset ofX and T :K � X∗ be an upper
semicontinuous set-valued map such thatcardT (x) <∞, ∀x ∈K. Then there existsx ∈K
such that

T (x)(x − y)∩R− 
= ∅, ∀y ∈K,
i.e.,x ∈K is a solution for(SVVI).



16 A. Kristály, C. Varga / J. Math. Anal. Appl. 282 (2003) 8–20

s

-

result
Proof. Let F :K ×K�R defined byF(x, y)= T (x)(x − y). We verify the hypothese
from Theorem 2.2. Letx ∈K be fixed.

To prove (i), letU be a neighborhood ofF(x, y), y ∈K is fixed. Since cardT (x) <∞,
then there existsδ > 0 such that

BR
(
x∗(x − y), δ)⊂U, ∀x∗ ∈ T (x). (4.1)

Let

δ1 :=min

{
δ

3(‖y‖+ 1)
,

δ

3(‖x‖+ 1)

}
.

SinceT is upper semicontinuous onK, for
⋃
x∗∈T (x) BX∗(x∗, δ1) (which is a neighbor

hood ofT (x) in X∗), there existsη∗ > 0 such that

T (w)⊂
⋃

x∗∈T (x)
BX∗(x

∗, δ1), ∀w ∈BK(x,η∗). (4.2)

Let

η :=min

{
δ

3(M + 1)
, η∗,1

}
,

whereM := max{‖x∗‖ | x∗ ∈ T (x)}. We prove, that for allz ∈ BK(x,η): F(z, y) ⊂ U ,
which means thatx � F(x, y) is usc onK. For this letz ∈ K such that‖z − x‖ < η
and let z∗ ∈ T (z). From (4.2) and from the fact thatη � η∗, we have thatT (z) ⊂⋃
x∗∈T (x) BX∗(x∗, δ1). Therefore, there existsx∗0 ∈ T (x) such thatz∗ ∈ BX∗(x∗0, δ1), i.e.,
‖z∗ − x∗0‖< δ1. We have∣∣z∗(z− y)− x∗0(x − y)∣∣

= ∣∣(z∗ − x∗0)(z)+ x∗0(z− x)− (z∗ − x∗0)(y)∣∣
�
∥∥z∗ − x∗0∥∥ · ‖z‖ + ∥∥x∗0∥∥ · ‖z− x‖+ ∥∥z∗ − x∗0∥∥ · ‖y‖
� δ

3(‖x‖+ 1)
· (‖x‖ + η)+ δ

3(M + 1)
· ∥∥x∗0∥∥+ δ

3(‖y‖+ 1)
· ‖y‖< δ.

Therefore,z∗(z− y) ∈⋃x∗∈T (x) BR(x
∗(x − y), δ), ∀z∗ ∈ T (z), i.e.,F(z, y)⊂ U , using

(4.1).
To prove (ii), letx∗ ∈ T (x) andy1, y2 ∈K, λ ∈ [0,1]. Sincex∗ is linear, we have

x∗
(
x − λy1− (1− λ)y2

)= λx∗(x − y1)+ (1− λ)x∗(x − y2)

∈ λT (x)(x − y1)+ (1− λ)T (x)(x − y2).

From this, we haveF(x,λy1+(1−λ)y2)⊆ λF(x, y1)+(1−λ)F (x, y2), i.e.,y� F(x, y)
is concave.

SinceF(x, x)= T (x)(0)=⋃x∗∈T (x) x∗(0)= {0}, thenF(x, x) ∩ R− = {0} 
= ∅.
Therefore, from Theorem 2.2 there existsx ∈K such thatF(x, y) ∩R− 
= ∅, ∀y ∈K,

which is exactly the desired conclusion.✷
Specializing the above statement to single-valued map, we obtain the well-known

of Browder.
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Corollary 4.1 [3]. Let K be a convex, compact subset ofX and let T :K → X∗ be
continuous. Then, there existsx ∈K such that

T (x)(y − x)� 0, ∀y ∈K,
i.e.,x is a solution for(VI) .

Proof. TakeT (x) = {T (x)}, ∀x ∈ K. We remark, that the continuity ofT is equivalent
with the upper semicontinuity ofT (see [1]). From Theorem 4.1, we obtainx ∈K such that
T (x)(x − y) ∩ R− 
= ∅, ∀y ∈ K. From this,T (x)(x − y)� 0, ∀y ∈ K, which completes
the proof. ✷

In the rest of the paper, we will be interested to guarantee solution for (DI). For thi
recall some notions from [1].

In the sequel, letF :X� R be a set-valued map with nonempty and compact val
First of all, we define the contingent cone.

Let K be a subset of a normed spaceX andx ∈ K, K being the closure ofK. The
contingent coneTK(x) is defined by

TK(x)=
{
v

∣∣∣∣ lim inf
h→0+

dist(x + hv,K)
h

= 0

}
.

We say thatF is Lipschitz aroundx ∈ X if there exist a positive constantL and a
neighborhoodU of x such that

∀x1, x2 ∈ U, F(x1)⊂ F(x2)+L‖x1− x2‖ · [−1,1].
LetK ⊆X. We say thatF isK-locally Lipschitzif it is Lipschitz around allx ∈K.

Proposition 4.1.If F :X� R is K-locally Lipschitz then the restrictionF |K :K � R is
continuous onK.

Thecontingent derivative DF(x, y) of F :X�R at (x, y) ∈Graph(F ), see [1, p. 181]
is the set-valued map fromX to R defined by

Graph
(
DF(x,y)

) := TGraph(F )(x, y),

whereTGraph(F )(x, y) is the contingent cone at(x, y) to theGraph(F ).
We can characterize the contingent derivative by a limit of differential quotient

(x, y) ∈Graph(F ) and suppose thatF is Lipschitz aroundx. We have

v ∈DF(x,y)(u) ⇐⇒ lim inf
h→0+

dist

(
v,
F (x + hu)− y

h

)
= 0, (4.3)

see [1, Proposition 5.1.4, p. 186].

Remark 4.1. Let us consider the case whereF is single-valued, i.e.,F(x) = {f (x)},
∀x ∈X. Suppose thatf :X→R is continuously differentiable. From [1, Proposition 5.1
p. 184] we have that

DF
(
x,f (x)

)
(h)=∇f (x)h, ∀h ∈X. (4.4)
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We say thatF :X�R is sleekat (x, y) ∈Graph(F ) if the map

Graph(F ) ! (x ′, y ′)�Graph
(
DF(x ′, y ′)

)
is lower semicontinuous at(x, y). F is sleek if it is sleek at every point(x, y) ∈Graph(F ).
F :X�R is lower semicontinuously differentiable(see [1, p. 188]) if the map

(x, y,u) ∈Graph(F )×X�DF(x,y)(u)
is lower semicontinuous.

Of course the lower semicontinuous differentiability ofF implies that this is sleek.

Remark 4.2. If F is a closed set-valued map (i.e.,Graph(F ) is closed) and is sleek a
(x, y) ∈ Graph(F ), then the contingent derivative at(x, y) is a closed convex (proces
set-valued map, due to Theorem 4.1.8 from [1, p. 130].

The first result, concerning the (DI) problem is the following

Theorem 4.2.LetX be a real normed space,K a compact, convex, nonempty subse
X andF :X� R be aK-locally Lipschitz set-valued map with compact and nonem
values. Then there existsx ∈K such that

DF
(
x,minF(x)

)
(u− x)⊆R+, ∀u ∈K,

i.e.,x is a solution for(DI).

Proof. SinceF isK-locally Lipschitz, thenF |K is usc and lsc onK, see Proposition 4.1
Applying Lemma 3.1 forF := F |K , Z :=K, Y := R andf (x, y)=−y we observe tha
x �→ minF |K(x) is continuous onK. K being compact, there existsx ∈ K such that
minF(x)�minF(x), ∀x ∈K, i.e.,

F(x)−minF(x)⊆R+, ∀x ∈K. (4.5)

Let v ∈DF(x,minF(x))(u− x) be a fixed element,u ∈K being also fixed. From th
relation (4.3) we have that

lim inf
h→0+

dist

(
v,
F (x + h(u− x))−minF(x)

h

)
= 0, (4.6)

sinceF isK-locally Lipschitz (in particular is Lipschitz aroundx). Becausex+h(u−x) ∈
K, using (4.5), we have that

F(x + h(u− x))−minF(x)

h
⊆R+.

Suppose thatv < 0. Then

0< |v| = dist(v,R+)� dist

(
v,
F (x + h(u− x))−minF(x)

h

)
which is in contradiction with (4.6). Therefore,v � 0. Sinceu ∈K andv were arbitrary,v
in DF(x,minF(x))(u− x), the proof is complete. ✷

Theorem 4.2 reduces to a classical result concerning variational inequalities.
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Corollary 4.2. LetK ⊂X be compact convex andf :X→ R continuously differentiable
Then there existsx ∈K such that

∇f (x)(u− x)� 0, ∀u ∈K,
i.e.,x is a solution for(PVI).

Example 4.1.LetX be a real normed space andK be a compact convex subset ofX. Let
us consider two locally Lipschitz functionsf,g :X→ R and we define a set-valued m
F :X�R such that for allx ∈X, F(x) is the interval (maybe degenerate) betweenf (x)

andg(x). Let us suppose thatf (x)� g(x), ∀x ∈ K. Naturally,F is K-locally Lipschitz
and we can apply the above theorem.

Example 4.2.Let f,g : R→R defined by

f (x)=
{−2x − 1, x < 0,
−1, x � 0,

and g(x)=
{

1, x < 0,
−2x + 1, x � 0,

andF : R� R defined as in the above example. LetK := [−1,1]. Clearly,f andg are
locally Lipschitz functions, andf (x) � g(x), ∀ x ∈ K. Applying the above example
F is K-locally Lipschitz, therefore we can apply Theorem 4.2, obtaining solution
the problem (DI). Calculating effectively the contingent derivatives, we obtain tha
solutions for (DI) corresponding toF andK are the points in the interval[0,1].

When the setK is not compact, the problem is more delicate.

Theorem 4.3.LetX be a real normed space,K a closed, convex, nonempty subset oX
andF :X�R be a closed, lower semicontinuously differentiable,K-locally Lipschitz set-
valued map with compact and nonempty values. We suppose that:
there exist a compact subsetK0 ofX and an elementy0 ∈K ∩K0 such that

infDF
(
x,minF(x)

)
(y0− x) < 0, ∀x ∈K \K0.

Then there existsx ∈K ∩K0 such that

DF
(
x,minF(x)

)
(u− x)⊆R+, ∀u ∈K,

i.e.,x is a solution for(DI).

Proof. LetG :K×K�R defined byG(x,u)=DF(x,minF(x))(u−x). We shall show
thatG satisfies the hypotheses from Theorem 2.3.

To prove (i), it’s enough to prove that the functionx �→minF(x) is continuous onK.
This fact can be deduced similarly as in Theorem 4.2, using again Lemma 3.1
us considerx ∈ K fixed and letw ∈ G(x,u) = DF(x,minF(x))(u − x), for u ∈ K
fixed and{xn} ⊂ K an arbitrary sequence which converges tox. Since minF(xn)→
minF(x) and using the lower semicontinuous differentiability ofF , there existwn ∈
DF(xn,minF(xn))(u− xn)=G(xn,u) such thatwn→w. Therefore,K ! x�G(x,u)
is lsc,∀u ∈K.

(ii) follows from Remark 4.2, that is the contingent derivative is a convex set-va
map. Therefore,K ! u�G(x,u) is convex,∀x ∈K.
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For (iii), let x ∈ K and v ∈ DF(x,minF(x))(0). Using the characterization of th
contingent derivative and the fact thatF isK-locally Lipschitz (see (4.3)), we have

lim inf
h→0+

dist

(
v,
F (x)−minF(x)

h

)
= 0.

SinceF(x)−minF(x)
h

⊆R+, we obtain thatv � 0. Therefore,G(x,x)=DF(x,minF(x))(0)
⊆R+, ∀x ∈K.

From our hypothesis, we can deduce thatDF(x,minF(x))(y0 − x) ∩ R∗− 
= ∅, ∀x ∈
K \K0.

From Theorem 2.3, there exists an elementx ∈ K such thatG(x,u) ⊆ R+, ∀u ∈ K,
which is exactly the desired relation.✷

In the finite dimensional case, we can use the following coerciveness hypothesis i
of the above one:
there existsy0 ∈K such that

lim sup
‖x‖→∞
x∈K

infDF
(
x,minF(x)

)
(y0− x) < 0.

Indeed, this hypothesis implies that there existε > 0 anda > 0 such that

sup
‖x‖�a
x∈K

infDF
(
x,minF(x)

)
(y0− x)�−ε < 0.

Let K0 be the closed ballBX(0,max{a,‖y0‖}). Since dimX <∞ thenK0 is compact.
Moreover,y0 ∈ K ∩K0. Using the above relation, we haveDF(x,minF(x))(y0− x) ∩
R∗− 
= ∅, ∀x ∈K \K0.
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