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Abstract

In this paper, we prove two set-valued versions of Ky Fan’'s minimax inequality. From these
results, versions of Schauder’s and Kakutani’'s fixed point theorems can be deduced. We formulate a
variational inclusion problem for set-valued maps and a differential inclusion problem, concerning
the contingent derivative. Sufficient conditions for the existence of solution for these inclusion
problems are obtained, generalizing classical variational inequality problems.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let X be a real normed spackj, K2 C X two nonempty sets ang: K1 x K2 — R a
given function. An important problem in the nonlinear analysis is the so-catjadibrium
problem,i.e., find an elemeni € K1 such that

@(x,y) =20, VyeKp. (EP)

The most familiar existence result in this direction is the Ky Fan minimax inequality,
see [5].

Theorem 1.1.Let K be a nonempty convex, compact subseY@nd¢: K x K - R a
function satisfying

* Corresponding author.
E-mail addressesakristal@math.ubbcluj.ro (A. Kristaly), csvarga@cs.ubbcluj.ro (C. Varga).
1 Research supported in part by the EU under Contract No. HPRN-CT-1999-00118 and by the Research Center
of Sapienta Foundation.

0022-247X/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(02)00335-9



A. Kristaly, C. Varga / J. Math. Anal. Appl. 282 (2003) 8-20 9

(i) Vye K, x — ¢(x,y)isusconk;
(i) Vx e K,y — ¢(x,y) is quasiconvex oK ;
(i) Vye K, ¢(y,y) >0.

Then, there exists an element K such that
p(x,y) =20, VyeKk.
This result has many applications in various branches of mathematics: mathematical
economy, game theory, fixed point theorems, variational inequalities, etc.
In [3], Browder studies a particular case of the above general equilibrium prg&Em

More precisely, he poses the followingriational inequalityproblem: find an element
X € K such that

T(E)(y—%) >0, VyeKk,

whereK is a convex subset of a topological vector sp&cd’: K — E* is a continuous
operator,E* the dual ofE.
The above variational inequality can be written in the following form:

TE)@E—y)NR_#0, VyeKk. (V1)

The aim of our paper is two-fold. First, we state a similar result in set-valued context as
(VI), i.e., we formulate aet-valued variational inclusioproblem, guaranteeing a solution
for this. More precisely, le7 : K ~~ X* be a set-valued map. The problem is: find an
elementx € K such that

TEE—y)NR_#0, VyeK. (SVVI)

Secondly, ifT = V f, f being continuously differentiable oki, we have a particular
variational inequality problem: find an element& K such that

Vi@E)(y—%) >0, VyeKk. (PVI)

But in several problems the functiofi is not differentiable and perhaps is not single-
valued. Let us consider the following set-valued ni@pR ~~ R defined by

{1}, x <0,
FO(X)Z:{_]-: 1}1 )CZO,
{—1}, x>0,

and Ko = [—1, 1]. Clearly, for Fp and Ko we haven't a classical variational inequality
problem, like(PVI).

Therefore, it's natural to pose the followiniifferential inclusionproblem: letF : X ~
R be a set-valued map with compact, nonempty valXebging a normed spac&, C X
nonempty convex subset &f. Findx € K such that

DF(X,minF(X))(u—X) SRy, Yuek, (DI)

where DF (x, y) is the contingent derivative atx, y) € Graph(F), see Section 4. In
particular, if F(x) = {f(x)} is a single-valued continuously differentiable function on
X, then the above differential inclusion problem reduceéR¥dl), sinceDF (x, f(x)) =
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V f(x). In the above inclusion, the left-hand side may be empty for some elemémt
this case (as convention), the inclusion will be considered trivial. For the above set-valued
map Fp, an easy calculation shows that every element from the intéfyat [—1, 1] is
solution for the correspondin@]).

To solve the above problems, we need set-valued versions of Ky Fan-type result. For
this, we formulate tweset-valued equilibrium problemséet F: K x K ~~ R be a set-
valued map. Find'1 € K resp.xz € K such that

F(x1,y) SRy, V¥yek, (SVEP1)
resp.
F(¥2,y)NR_#0, VyeK. (SVEP2)

The main purpose of Section 2 is to present existence resuliS¥#P1) and(SVEP2.
It will be pointed out that from our main result of this section (Theorem 2.1) we can deduce
a special form of the Ky Fan’s minimax inequality (Corollary 2.1), remarking that this
result does not cover the complete generality of the single-valued case. In the third section,
we give simple proofs for versions of Schauder’s and Kakutani’s fixed point theorems. In
the last section, we give sufficient conditions to guarantee the existence of solutions for
(SVVI) and(DI); in particular, containing a result of Browder’s type, see [3].

2. Set-valued versions of Ky Fan’s inequality

Let Z andY be metric spaces;: Z ~» Y be a set-valued map with nonempty values.
We define the graph of the functidn by

Graph(F) = {(z,y)eZ X YlyeF(z)}.

We say that the set-valued mafx Z ~ Y is upper semicontinuous ate Z (usc atz) if
and only if for any neighborhootl of F(z), 3p > 0 such that for every’ € Bz(z, n) we
haveF (') c U. The set-valued functiofi : Z ~ Y is lower semicontinuous ate Z (Isc
atz) if and only if for anyy € F(z) and for any sequence of elemerds) in Z converging
to z, there exists a sequence of elementg F(z,) converging toy.

The set-valued functior” is upper (resp.lower) semicontinuous o if F is upper
(resp. lower) semicontinuous at every paird Z.

We shall say that the set-valued mEgs continuousat z if it is both usc and Isc at,
and that it is continuous o# if and only if it is continuous at every point &f.

Let M be a subset of . We denote

FiMy=|zezZ| Fo)nM #0},
F'(M)={z€Z|F(x) c M}.

The subset~1(M) is called thenverse imagef M by F and F+1(M) is called thecore
of M by F.
We need the following characterization of the upper (resp. lower) semicontinuily of
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Proposition 2.1[1, Proposition 1.4.4]A set-valued map : Z ~» Y with nonempty values
is upper semicontinuous ¢hif and only if the inverse image of any closed subset is closed,
and is lower semicontinuous dhif and only if the core of any closed subset is closed.

Let K be a convex subset of a vector spatand F : X ~ R a set-valued code.
We say thatF is convex onK (resp.concave onk), see [1, p. 57], if and only if
Vx1,x2 € K andx € [0, 1],

AF(x1) + (1 — 1) F(x2) € (resp 2)F (Axy1+ (1— M)x2).

Remark 2.1. F is convex onK (resp. concave o) if and only if for all n > 2 and
A1,A2,..., Ay 20suchtha"? ; 1; =1and forallxy, x2,...,x, € K,

Z)»,’F(x,') C (resp. 2)F<Z)\,’xi>.
i=1 i=1

We use the intersection theorem due to Ky Fan, known in the literature as Ky Fan’s
lemma.

Lemma 2.1[4]. Let X be a Hausdorff topological vector spad€,a subset ofX and for
eachx € K, let S(x) be a closed subset &f such that

(i) there existsip € K such that the sef(xp) is compact
(ii) foreachxy,xa,...,x, € K, cofxy, x2,...,x,} S Ui_q S(xi).

Then
[ Stx) #0.

xekK

The main result of this section can be formulated as follows.

Theorem 2.1.Let X be a real normed spac&, a nonempty convex, compact subseX of
andF: K x K ~ R a set-valued map satisfying

(i) Vye K,x~ F(x,y)islsc onk;
(i) VxeK,y~ F(x,y)isconvexork;
(i) YyeK, F(y,y) SR,.
Then, there exists an elemeant K such that
F(X,y) SRy, VyeKk, (2.1)
i.e.,x is a solution for(SVEP1)

Proof. Forally e K, letS, ={x € K | F(x,y) S R.}. In order to prove relation (2.1) it's
enough to prove tha[ﬂyeK Sy # @. From (jii) it follows that S, # @, (y € Sy). From (i)
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and Proposition 2.1, the sef§ are closed for ally € K, and sincekK is supposed to

be compact, they are compact, too. Therefore (i) from Lemma 2.1 is satisfied. We shall
show that for ally1, y2, ..., y» € K, €O{y1, y2, ..., ya} € U1 Sy, . Indeed, supposing the
contrary, there existy, y2, ..., y, € K andi1, A2,..., 1, >0,>"7 ; A; = 1 such that

n
D nvigSy. Yi=Ln (2.2)
i=1

Let I ={i € {1,2,...,n} | ; > 0}. Of course,I # ¢¥. From (2.2) we have that
F(Qi_qxiyinyi) € R4, Vi =1, n. From this, we get

A.iF(ZA.iyi,yi)mR* #0, Viel. (2.3)
iel
Using (ii), (iii) and (2.3) we obtain
b+ { ZMF<ZMY[, yi)} NRE F(Z)»iyi, Z)»iyi)
iel iel iel iel
NR* CRLNR* =4.

This contradiction shows that (ii) from Lemma 2.1 holds. Therefoyg.« Sy # 9, i.e.,
there exists an elemeifite K such thatF(x,y) C Ry, Vye K. O

Remark 2.2.The above theorem remains true for any Hausdorff topological vector space.

In an analogous way, we can obtain the “dual” of the above result. For the sake of
completeness, we give the proof.

Theorem 2.2.Let X, K and F as above, satisfying

(i) Vye K, x ~ F(x,y)isusconk;
(i) Vx e K,y~ F(x,y)isconcave orK;
(i) Vye K, F(y,y)NR_ #4.

Then, there exists an eleméng K such that
F(x,y)NR_#@, VyekKk, (2.4)
i.e.,x is a solution for(SVEP2)

Proof. Forally e K, let S, ={x € K | F(x, y) N R_ # #}. We apply again Lemma 2.1.
From (iii) it follows that S, # @ (y € Sy). From (i) and Proposition 2.1, the sefs are
closed for ally € K, and sinceK is supposed to be compact, they are compact, too.
Therefore (i) from Lemma 2.1 is satisfied. We shall show that fopall,, ..., y, € K,
co{y1, y2, ..., ya} € U1 Sy,. Supposing the contrary, there exist y2, ..., y,» € K and

A1, A2, ..., An 20,37 4 &; =1 such that

n
D hiyi¢ Sy, Yi=Ln (2.5)
i=1
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Let I ={i € {1,2,...,n} | A; > 0}. Of course,I # @#. From (2.5) we have that
F(Q"i_q hivi. yi) € R%, Vi =1, n. From this, we have

)LiF(Z)Liy,’,yi) gRi, Viel. (2.6)

iel

Using (ii) and (2.6) we obtain

F(me,zxiyi) < ZAiF(inyi,y,) CRY,

iel iel iel iel

which contradicts (iii). This completes the proofo

Lemma 2.2.Let X be a normed spac& C X and f : K — R. We define the set-valued
mapF: K ~» R by F(x)=[f(x),00). Then

() if fis continuous orK thenF is continuous orK;
(i) if K is convex andf is convex ork, soisF onK;
(ii) if K is convex andf is concave orK thenF is concave orX .

As a first application, from Theorem 2.1 we obtain a special case of the Ky Fan's
minimax inequality.

Corollary 2.1. Let X be a real normed spacé& a nhonempty convex, compact subseX of
and f: K x K — R a function satisfying

(i) Yy e K, x — f(x,y)is continuous ork;
(i) VxeK,y— f(x,y)isconvexork;
(i) Vye K, f(y,y)>0.

Then, there exists an eleméng K such that

f&x,y) =0, VyeKk.

Proof. It's easy to verify that the functionf: K x K ~» R defined by F(x,y) =
[f(x,y),00) satisfies the hypotheses from Theorem 2.1, using Lemma 2.2. Therefore,
there existst € K such thatF'(x, y) € R4, Vy € K. From this, we have necessarily that
f&,y)=>0,VyeK. O

The compactness & in Theorem 2.1 and Theorem 2.2 is a rather restrictive condition.
In the classical theory this condition can be weakened by assuming a so-aaiedity
condition see [2], due to Brézis, Nirenberg and Stampacchia. We give a set-valued version
of their result.

Theorem 2.3.Let X be a real normed spac& a nonempty convex, closed subseXof
andF: K x K ~ R a set-valued map satisfying
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() Vye K, x~ F(x,y)islsconk;
(i) VxeK,y~ F(x,y)isconvexork;
(i) Vye K, F(y,y) SR4;
(iv) there exist a compact sé&ly C X and an elementg € K N Ko such that

F(x,yo) NR* #0, VxeK \ Ko. (2.7)

Then, there exists an element K N Kq such that
F(*,y) SRy, Vyek
i.e.,x is a solution for(SVEP1)

Proof. It's similar to the proof of Theorem 2.1. For alle K, let Sy = {x e K | F(x,y) €

R4+}. We prove thatS,, € Ko. Indeed, supposing the contrary, there exists an element
z € Sy, such that: ¢ Ko. From the definition o5y, we have that (z, yo) € Ry which is

in contradiction with the relation (2.7). Therefo, € Ko and sinceKg is compact Sy,

is compact, too. The rest of the proof is the same as in Theorem 211.

3. Application to fixed point theorems

From Theorem 2.2 we can deduce directly a version of Schauder fixed point theorem,
and in particular the Brouwer fixed point theorem.

Corollary 3.1. Let K be a convex compact subset of a real normed spacefakd— K
a continuous function. Thefi has a fixed point.

Proof. Let F: K x K ~» R be the set-valued map defined Byx, y) = —|ly — f(x)| +
lx — f(x)| + [0, co). We verify (i)—(iii) from Theorem 2.2.

(i) and (ii) follow from Lemma 2.2, using the concavity of— —|y — f(x)| for all
x € K. For (iii), we have

{—=ly=r»|+[y-r»m|+10.00)}nNR_={0}#£0, VyeK.
Therefore, there existse K, such that
{=ly=r®|+|x=f@]|+[0,00)}NR_#0, Vyek.

We have necessarily that||ly — f(X) ||+ |lx — f(X)]| <0,Vy e K. Lety := f(X)(€ K)
andwe geflx — f(x)|| <0,i.e,x=f(X). O

If M is a subset of a normed spa&e andx € X then we denote by dist, M) =
inf{llx — yll [y € M}.

Now we deduce a special form of Kakutani’s fixed point theorem from Theorem 2.1.
First, we need the following result, which is known in the literature as Maximum Theorem.
Let us consider the set-valued mBpZ ~~ Y, Z andY being metric spaces and a function
f:Graph(F) — R. We define themarginal functiong : Z — R U {+o00} by

gx)= sup f(x,y).

yEF(x)
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We have the Maximum Theorem.

Lemma 3.1[1, Theorem 1.4.16, p. 48let F : Z ~ Y be a set-valued map and a function
f:Graph(F) — R. Then

(i) if fandF are Isc, so is the marginal function
(i) if f and F are usc and if the values @ are compact, so is the marginal function.

Theorem 3.1.Let X be a normed spacek be a convex, compact subset Xfand
G : K ~ X be a continuous set-valued map &nwith nonempty compact convex values.
If K € G~1(K) thenG has a fixed point € K N G (%).

Proof. We define the set-valued mdp: K x K ~~ R by
F(x,y)= diSt(y, G(x)) - diSt(x, G(x)) + [0, 00).

Applying Lemma 3.1 forf(x,y) = —|x — y|, Z:= K, Y := X and F := G, we obtain

that g(x) = —dist(x, G(x)) is continuous onkK. The continuity of the functionx —
dist(y, G(x)) for y fixed, can be proved analogously, adapting the proof of the previous
Lemma 3.1, see [1]. Using Lemma 2.2(i) we deduce that F(x, y) is Isc onK for all

y € K. Sincey — dist(y, G(x)) is convex function for allk € K, using Lemma 2.2(ii)

we obtain thaty ~~ F(x, y) is convex for allx € K. Moreover,F(y, y) = R,. Therefore,
from Theorem 2.1 we havee K such that disty, G(x)) — dist(x, G(x)) + [0, o) € R4,

Vy € K. From this, we obtain that

dist(y, G(x)) —dist(¥, G(X)) >0, VyeK. (3.1)
Sincek € G 1(K), i.e., forallx € K, G(x) N K # ¥, we may choose an elemenic
G (x)N K. Substituting in (3.1), we obtain that dist G (x)) < 0. Thereforec € G(x). O

Remark 3.1. The Kakutani's fixed point theorem is a natural set-valued version of
Brouwer’s fixed point theorem. Of course, we can deduce the latter one from the previous
theorem.

4. Application to variational inclusion theory

Let X be areal normed spack,be a subset ok and7 : K ~~ X* be a set-valued map.

We haveT (x)(y) = U ez @) * ().
The main result of this section is

Theorem 4.1.Let K be a convex, compact subsetXfand 7 : K ~~ X* be an upper
semicontinuous set-valued map such tt&ati7 (x) < oo, Vx € K. Then there exists € K
such that

TE)E—y)NR_#0, Vyek,

i.e.,x € K is a solution for(SVVI).
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Proof. Let F: K x K ~~ R defined byF (x, y) =7 (x)(x — y). We verify the hypotheses
from Theorem 2.2. Let € K be fixed.
To prove (i), letU be a neighborhood af (x, y), y € K is fixed. Since card (x) < oo,
then there exist8 > 0 such that
Br(x*(x —y),8) CU, Vx*eT(x). (4.1)

Let

§1:= min{ 5 , ) }
3yl +1) 3(lxll+D

SinceT is upper semicontinuous ok, for (J,«c7,) Bx+(x*, 81) (which is a neighbor-
hood of7 (x) in X*), there existg* > 0 such that

Tw)c |J Bx-(x*.61). YweBg(x.n. (4.2)
x*eT (x)
Let
s
=min{ ————, n*, 1%,
g {3(M+1)”7 }

whereM := maxX||x*|| | x* € 7 (x)}. We prove, that for alk € Bx (x,n): F(z,y) Cc U,
which means that ~ F(x, y) is usc onK. For this letz € K such that||z — x| < 7
and letz* € T(z). From (4.2) and from the fact that < n*, we have that7 (z) C
Ux*eT(x) Bx+(x*, 81). Therefore, there exists] € 7 (x) such that* € Byx«(xg, 81), i.e.,
lz* — xgll < 81. We have

|2z — y) —x5(x — y)|
= |(z* = %) (@) + x5z = x) = (2" = x5) V)|

< =5 | Nzl + g |-z = %0+ 2% = x5 ] - Iyl

1)

< ()t + —yl <s.
3+ D 3+ Mol 3D

Thereforez*(z — y) € UX*ET(X) BR(x*(x —y),98), Vz* € T (), i.e., F(z,y) C U, using
(4.2).
To prove (ii), letx* € 7 (x) andys, y2 € K, A € [0, 1]. Sincex* is linear, we have

x*(x = ay1— (L= A)y2) = Ax*(x — y1) + (L= M)x*(x — y2)
e AT () (x —y1) + (L= V)T (X)(x — y2).

From this, we havé (x, Ay1+(1—X1)y2) CAF (x, y1)+ A=A F(x, y2),i.e.,y ~ F(x,y)
is concave.
SinceF(x,x) =7 (x)(0) = UX*ET(X)x*(O) = {0}, thenF(x,x) N R_ = {0} # @.
Therefore, from Theorem 2.2 there exists K such thatF(x, y) "R_ #£ @, Vy € K,
which is exactly the desired conclusiono

Specializing the above statement to single-valued map, we obtain the well-known result
of Browder.
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Corollary 4.1 [3]. Let K be a convex, compact subset ¥fand let7: K — X* be
continuous. Then, there exisi€ K such that

Tx)(y—Xx)=20, VyeKk,

i.e.,x is a solution for(VI).

Proof. Take7 (x) = {T'(x)}, Vx € K. We remark, that the continuity df is equivalent
with the upper semicontinuity &f (see [1]). From Theorem 4.1, we obtair K such that
T(x)(x —y)NR_ #@,Vy € K. From this,T (x)(x — y) <0, Vy € K, which completes
the proof. O

In the rest of the paper, we will be interested to guarantee solution for (DI). For this, we
recall some notions from [1].

In the sequel, lef": X ~~ R be a set-valued map with nonempty and compact values.
First of all, we define the contingent cone.

Let K be a subset of a normed spakeandx € K, K being the closure oK. The
contingent condx (x) is defined by
inf dist(x + hv, K) _ O}.

limin
h—0t+

Tk (x) = {U

We say thatF is Lipschitz aroundx € X if there exist a positive constart and a
neighborhood/ of x such that

Vx1,x2€ U, F(x1) C F(x2) + Llx1 —x2| - [-1,1].
Let K C X. We say that is K-locally Lipschitzif it is Lipschitz around allx € K.

Proposition 4.1.1f F: X ~» R is K-locally Lipschitz then the restrictiof’ |x : K ~ R is
continuous ork..

Thecontingent derivative D, y) of F: X ~~ R at(x, y) € Graph(F), see [1, p. 181],
is the set-valued map frotd to R defined by

Graph(DF (x, y)) := Toraphr) (X, ¥),

whereTeraph r)(x, y) is the contingent cone &t, y) to theGraph(F).
We can characterize the contingent derivative by a limit of differential quotient. Let
(x, y) € Graph(F) and suppose thdt is Lipschitz around:. We have

L . F hu) —
veEDF(x,y)(u) < Ilmlnfdlst<v, M) =0, (4.3)
h—0+ h
see [1, Proposition 5.1.4, p. 186].

Remark 4.1. Let us consider the case whefeis single-valued, i.e.F(x) = {f(x)},
Vx € X. Suppose thaf : X — R is continuously differentiable. From [1, Proposition 5.1.3,
p. 184] we have that

DF(x, f(x))(h) =V f(x)h, VheX. (4.4)
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We say thatF': X ~ R is sleekat (x, y) € Graph(F) if the map
Graph(F) > (x', y") ~» Graph(DF (x', y'))
is lower semicontinuous &k, y). F is sleek if it is sleek at every poilit, y) € Graph(F).
F: X ~~ R islower semicontinuously differentiablgee [1, p. 188]) if the map
(x,y,u) € Graph(F) x X ~ DF(x, y)(u)

is lower semicontinuous.
Of course the lower semicontinuous differentiabilityfofmplies that this is sleek.

Remark 4.2.1f F is a closed set-valued map (i.&raph(F) is closed) and is sleek at
(x,y) € Graph(F), then the contingent derivative &t, y) is a closed convex (process)
set-valued map, due to Theorem 4.1.8 from [1, p. 130].

The first result, concerning the (DI) problem is the following

Theorem 4.2.Let X be a real normed spac& a compact, convex, honempty subset of
X and F: X ~ R be aK-locally Lipschitz set-valued map with compact and nonempty
values. Then there existse K such that

DF (X, minF(X))(u—X) SRy, Vuek

i.e.,x is a solution for(Dl).

Proof. SinceF is K-locally Lipschitz, thenF|g is usc and Isc oK, see Proposition 4.1.
Applying Lemma 3.1 forF := Flx, Z := K, Y :=R and f (x, y) = —y we observe that
x — minF|g(x) is continuous onK. K being compact, there exisise K such that
minF(x) <minF(x),Vx €K, i.e.,

F(x)—minF(x)CR;, Vxek. (4.5)
Letve DF(x,minF(x))(u — x) be a fixed element; € K being also fixed. From the
relation (4.3) we have that
F(xX + h(u—X)) —min F(;?)) —0
7 \
sinceF is K-locally Lipschitz (in particular is Lipschitz arourid. Becaus& +h(u —Xx) €
K, using (4.5), we have that
F@+hw—x»—mmF@)C
7 <
Suppose that < 0. Then

Iiminfdist(v,

h—0t

(4.6)

R..

0 < |v| =dist(v, R+) < dist<v, FE+hu =) - mmF@)

h

which is in contradiction with (4.6). Therefore > 0. Sincex € K andv were arbitraryy
in DF(x,minF(x))(u — x), the proof is complete. O

Theorem 4.2 reduces to a classical result concerning variational inequalities.
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Corollary 4.2. Let K C X be compact convex anfl: X — R continuously differentiable.
Then there exists € K such that

Vi@ wu—x)>0 Vuek,
i.e.,x is a solution for(PV1I).

Example 4.1.Let X be a real normed space akdbe a compact convex subsetXf Let

us consider two locally Lipschitz functiong g: X — R and we define a set-valued map
F: X ~ R such that for allk € X, F(x) is the interval (maybe degenerate) betw¢gdén)
andg(x). Let us suppose thaf(x) < g(x), Vx € K. Naturally, F is K-locally Lipschitz
and we can apply the above theorem.

Example 4.2.Let f, g:R — R defined by

—-2x—1, x<0, )y x <0,
f(x)_{—l, x>0, and g(x)_{—zx+1, x>0,

and F :R ~ R defined as in the above example. lét=[—1, 1]. Clearly, f andg are
locally Lipschitz functions, andf(x) < g(x), V x € K. Applying the above example,

F is K-locally Lipschitz, therefore we can apply Theorem 4.2, obtaining solution for
the problem (DI). Calculating effectively the contingent derivatives, we obtain that the
solutions for (DI) corresponding t& and K are the points in the intervgd, 1].

When the seK is not compact, the problem is more delicate.

Theorem 4.3.Let X be a real normed spac& a closed, convex, nonempty subsekof
andF: X ~~ R be a closed, lower semicontinuously differentiatdlelocally Lipschitz set-
valued map with compact and nonempty values. We suppose that

there exist a compact subskp of X and an elementg € K N Ko such that

inf DF (x,minF(x))(yo—x) <0, Vx €K\ Ko.
Then there exists € K N Kg such that
DF(X,minF(X))(u—X) SRy, Vuek,
i.e.,x is a solution for(Dl).

Proof. LetG: K x K ~ R defined byG (x, u) = DF (x, min F (x))(u — x). We shall show
thatG satisfies the hypotheses from Theorem 2.3.

To prove (i), it's enough to prove that the functiem> min F(x) is continuous ork.
This fact can be deduced similarly as in Theorem 4.2, using again Lemma 3.1. Let
us considernx € K fixed and letw € G(x,u) = DF(x,minF(x))(u — x), foru € K
fixed and{x,} C K an arbitrary sequence which convergesxtoSince minF (x,) —
min F(x) and using the lower semicontinuous differentiability Bf there existw, €
DF (x,, minF (x,))(u — x,) = G(x,,, u) such thatw,, — w. ThereforeK > x ~ G(x, u)
islsc,Vu € K.

(ii) follows from Remark 4.2, that is the contingent derivative is a convex set-valued
map. ThereforeK > u ~ G(x, u) is convexyx € K.
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For (iii), let x € K andv € DF(x, min F(x))(0). Using the characterization of the
contingent derivative and the fact thétis K -locally Lipschitz (see (4.3)), we have

F(x) —}:ninF(x)) _o.

Iiminfdist(v,
h—0t
Since 0=MinF) — R we obtain that > 0. ThereforeG (x, x) = DF (x, min F(x))(0)
- R+, Vx e K.

From our hypothesis, we can deduce thaf (x, min F(x))(yo —x) NR* # @, Vx €
K\ Kp.

From Theorem 2.3, there exists an elemert K such thatG(x,u) C Ry, Yu € K,
which is exactly the desired relationm

In the finite dimensional case, we can use the following coerciveness hypothesis instead
of the above one:
there existgg € K such that

lim supinf DF (x, min F (x))(yo — x) <O.
llx||—o00
xekK

Indeed, this hypothesis implies that there exist 0 anda > 0 such that

sup inf DF(x, minF(x))(yo—x) < —& <O0.
llxl>a
xekK

Let Ko be the closed balBx (0, maxXa, ||yol|}). Since dimX < oo then Kq is compact.
Moreover,yg € K N Kp. Using the above relation, we ha¥®F (x, min F(x))(yo — x) N
R* £@,Vx € K \ Ko.
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