AB INITIO DENSITY FUNCTIONAL THEORY STUDY OF CF₂HCL AND ITS ISOTOPIC SPECIES

<u>A. Bende^{1, 2}</u> and V. Tosa¹

¹National Institute of Research and Development of Isotopic and Molecular Technologies, Str. Donath, No: 71-103, P.O. Box 700, Ro-3400, Cluj-Napoca, Romania

²*Molecular Biophysics Department, German Cancer Research Centre, Im Neueunheimer Feld 280, D-69120 Heidelberg, Germany*

ABSTRACT. The geometrical parameters, permanent dipole moments and harmonic vibrational frequencies of CF₂HCl (Freon22) and its isotopic species (D and ¹³C) has been calculated in four different basis sets (cc-pVDZ, cc-pVTZ, aug-cc-pVDZ and aug-cc-pVTZ) at the density functional theory (DFT) method using B3LYP and B3PW91 exchange-correlation functionals. The results are compared with the experimental values. The calculated values are found to be in good agreement with the available experimental data, and explanations are offered for discrepancies. This confirms the accuracy of the ab initio DFT study in the geometry structure and other molecular parameter calculation.

1. Introduction

The experimental and computer simulation spectra of laser-induced infrared multiple photon excitations (IRMPE) of CF_2HCl for the purpose of selective isotopic enrichment have been studied [1, 2, 3] as a possible solution for laser isotope (D and ¹³C) separation. In order to understand the multiple photon excitation mechanism, an accurate study of equilibrium geometry, permanent and induced dipole moments, harmonic vibrational frequencies and their assignments is required.

The experimental geometry structure was determined very early in 1962 from microwave spectra by *McLay et al.* [4] and *Beeson et al.* [5] while the infrared (IR) and Raman spectra of CF₂HCl and their isotopic species (D and ¹³C) were obtained by *Magill et al.* [6] in 1986 and the band assignment and isotopic shifts were briefly discussed in their paper. Our aim is to obtain a good agreement for geometry and frequencies using DFT methods in order to get much more description for other molecular parameters which cannot be compared with the experimental data and which are necessary in IRMPE spectra simulation.

2. Results and Discussion

The calculations were carried out in Heidelberg on Hewlett-Packard cluster. The standard B3LYP and B3PW91 DFT type calculations (full geometry optimization and harmonic vibrational frequencies) were performed by the Gaussian98 [7] computer code using cc-pVDZ, Aug-cc-pVDZ, cc-pVTZ and Aug-cc-pVTZ Dunning's correlation consistent basis sets. The calculated results are summarized in three tables. Table 1 show the results obtained for the equilibrium, geometry and permanent dipole moments of the CF₂HCl at the DFT method. The bond distances are given in Å, the bond angles are given in Degree and the

A. BENDE, V. TOSA

permanent dipole moments are given in Debye. Table 2 contain the harmonic vibrational frequencies for protonated (H) and deuterated (D) species given in cm^{-1} while in Table 3 are presented the same results but for ¹²C and ¹³C isotopic species.

TABLE 1

The geometrical parameters (in Å and Degree) and permanent dipole moments (in Debye) of CF₂HCl computed at DFT method, using cc-pVDZ, Aug-cc-pVDZ, cc-pVTZ, Aug-cc-pVTZ basis sets.

Basis	Method	r_1	r_2	r ₃	α_1	α_2	α_3	α_4	$ \mu_a $	$ \mu_c $
cc-	B3LYP	1.099	1.797	1.343	108.44	110.40	109.54	108.54	.277	1.415
-pVDZ	B3PW91	1.099	1.785	1.340	108.59	110.30	109.56	108.53	.292	1.428
Aug-cc-	B3LYP	1.095	1.788	1.353	109.41	110.09	109.57	108.10	.012	1.498
-pVDZ	B3PW91	1.096	1.778	1.347	109.34	110.07	109.58	108.17	.060	1.461
cc-	B3LYP	1.087	1.788	1.341	108.78	110.22	109.62	108.37	.145	1.429
-pVTZ	B3PW91	1.089	1.776	1.336	108.78	110.15	109.67	108.42	.150	1.411
Aug-cc-	B3LYP	1.086	1.784	1.344	109.11	110.10	109.67	108.20	.027	1.463
-pVTZ	B3PW91	1.089	1.774	1.339	108.99	110.08	109.69	108.32	.069	1.422
Exp.		1.080	1.747	1.367	108.99	110.74	110.20	107.63	.120	1.430

TABLE 2

The harmonic vibrational frequencies (in cm⁻¹) of CF₂HCl and its deuterated species computed at DFT method, using cc-pVDZ, Aug-cc-pVDZ, cc-pVTZ, Aug-cc-pVTZ basis sets.

B3LYP										
	cc-p	cc-pVDZ		-pVDZ	cc-pVTZ		Aug-cc-pVTZ		Exp.	
	Н	D	Н	D	Н	D	Н	D	Н	D
v_1	3125.7	2306.9	3175.0	2321.6	3129.3	2307.5	3130.2	2309.2	3020.5	2260.5
v_2	1295.1	1107.6	1289.6	1071.0	1319.5	1097.1	1314.5	1085.1	1313.2	1102.8
v ₃	1119.2	993.7	1082.7	988.7	1125.6	1009.1	1097.8	1004.9	1109.0	1012.7
ν_4	776.2	716.9	781.1	722.7	794.2	722.0	777.7	722.1	809.3	750.0
v ₅	591.1	586.3	578.4	573.9	600.4	589.4	590.7	586.0	596.3	592.1
ν_6	398.9	395.8	397.3	394.2	400.9	397.8	400.3	397.3	412.9	410.9
v_7	1364.9	1198.4	1335.0	1123.8	1374.0	1164.9	1362.7	1142.0	1351.3	1161.0
ν_8	1153.2	961.7	1094.9	952.0	1128.8	974.5	1109.7	969.2	1127.5	969.0
v ₉	357.5	354.7	355.3	352.6	359.2	356.4	358.3	355.5	365.4	365.0
					B3PW9	91				
ν_1	3137.7	2316.0	3150.3	2323.5	3129.5	2307.8	3130.2	2308.2	3020.5	2260.5
v_2	1300.3	1121.9	1293.5	1089.0	1319.8	1113.4	1315.2	1104.1	1313.2	1102.8
v ₃	1133.2	999.4	1100.1	993.9	1125.6	1012.0	1116.3	1008.3	1109.0	1012.7
ν_4	791.7	729.8	797.1	735.6	794.2	734.9	793.6	734.6	809.3	750.0
v_5	597.3	592.4	585.5	580.3	600.4	595.6	597.4	592.6	596.3	592.1
ν_6	406.1	402.9	403.9	400.6	407.6	404.4	406.9	403.7	412.9	410.9
ν_7	1367.0	1214.8	1336.8	1145.6	1372.3	1183.2	1362.2	1164.3	1351.3	1161.0
v_8	1170.6	964.6	1118.1	955.1	1149.5	975.9	1134.1	971.3	1127.5	969.0
v 9	362.4	359.6	359.5	356.8	363.3	360.5	362.2	359.4	365.4	365.0

As it can be observed from Table 1, the calculated geometry parameters (bonds and angles) are in a very good agreement with the experimental values. Increasing the number of the basis functions, the bond lengths and bond angles do

not change that much, but the values of the permanent dipole components (μ_a and μ_c) have an important basis set dependence.

The CF₂HCl is an asymmetric top molecule having C_s molecular symmetry with two types of vibrational bands (v_1 - v_6 : A' and v_7 - v_9 : A''). The A' symmetry vibrations give rise to polarized Raman and IR absorption bands of mixed a/c type, which in general have well defined central Q branch. While the A'' vibrations give rise to b type bands having central minima (only P and R branch) in IR absorption and Raman bands of similar shape.

In case of deuterated species (Table 2) it can be observed an important isotopic shift in vibrational frequencies especially for higher values, but at the same time we have to mention that this frequency values and their isotopic shifts are quite sensitive on the applied functional and basis set. As we are interested in IRMPE using CO_2 laser the two most important values are v_3 and v_8 . Both frequency values are well separated in the absorption band from their isotopic species.

TABLE 3

The harmonic vibrational frequencies (in cm ⁻¹) of ¹² CF ₂ HCl and its ¹³ C isotope computed at
DFT method, using cc-pVDZ, Aug-cc-pVDZ, cc-pVTZ, Aug-cc-pVTZ basis sets.

B3LYP										
		cc-pVDZ		-pVDZ	cc-pVTZ		Aug-cc-pVTZ		Exp.	
	^{12}C	¹³ C	^{12}C	¹³ C	^{12}C	¹³ C	^{12}C	¹³ C	^{12}C	¹³ C
v_1	3125.7	3111.3	3175.0	3137.6	3129.3	3116.7	3130.2	3120.9	3020.5	3010.6
v_2	1295.1	1289.0	1289.6	1286.3	1319.5	1312.7	1314.5	1310.2	1313.2	1307.2
v ₃	1119.2	1091.1	1082.7	1054.7	1125.6	1083.5	1097.8	1073.3	1109.0	1083.5
v_4	776.2	754.9	781.1	755.7	794.2	754.5	777.7	755.6	809.3	788.9
v_5	591.1	586.7	578.4	574.2	600.4	589.4	590.7	586.8	596.3	592.3
v_6	398.9	397.8	397.3	395.9	400.9	398.9	400.3	399.1	412.9	412.8
v_7	1364.9	1357.5	1335.0	1331.6	1374.0	1366.9	1362.7	1359.4	1351.3	1346.0
v_8	1153.2	1125.9	1094.9	1064.7	1128.8	1101.2	1109.7	1083.4	1127.5	1101.0
v9	357.5	355.1	355.3	354.0	359.2	357.1	358.3	356.7	365.4	363.0
					B3PW9	91				
ν_1	3137.7	3125.6	3150.3	3137.9	3129.5	3116.2	3130.2	3118.1	3020.5	3010.6
v_2	1300.3	1293.0	1293.5	1289.6	1319.8	1313.4	1315.2	1310.8	1313.2	1307.2
v ₃	1133.2	1102.9	1100.1	1072.1	1125.6	1099.5	1116.3	1090.7	1109.0	1083.5
ν_4	791.7	769.9	797.1	771.7	794.2	771.4	793.6	772.4	809.3	788.9
v_5	597.3	592.2	585.5	580.4	600.4	595.5	597.4	593.2	596.3	592.3
v_6	406.1	404.6	403.9	402.8	407.6	406.1	406.9	405.8	412.9	412.8
v_7	1367.0	1357.0	1336.8	1332.9	1372.3	1364.8	1362.2	1358.7	1351.3	1346.0
ν_8	1170.6	1140.3	1118.1	1087.9	1149.5	1121.9	1134.1	1107.0	1127.5	1101.0
v9	362.4	359.9	359.5	358.5	363.3	361.4	362.2	360.8	365.4	363.0

In case of ${}^{12}C$ and ${}^{13}C$ isotopes (Table 3) this frequency shifts are much smaller. Only v_3 and v_8 give considerable isotopic shift.

On the other hand it can be observed an important discrepancy between the theoretical and experimental frequency values due to the anharmonic effects. Taking into account the experimental anharmonic corrections [8] the calculated

A. BENDE, V. TOSA

values are in a very good agreement with the experimental results. Moreover comparing only the calculated and measured isotopic shifts this agreement is more accurate.

Considering the above results we found that in case of geometry parameters the method and basis set dependence are not so important that in case of permanent dipole moments and harmonic vibrational frequencies, the best approach for all these parameters can be obtained with B3LYP exchange-correlation functional using cc-pVTZ basis set. Comparing theoretical results with the experimental values we could establish the accuracy of the applied *ab inito* calculation (the choice of a suitable method and basis set). Using this calculation we are able to get other important molecular parameters (force constants, induced dipole moments, etc.) which cannot be easyly obtained by experimental methods. The knowledge of these molecular data are necessary as starting data to model the infrared multiphoton process in CF_2HCl and their isotopic species.

References

- 1. A. Bende, V. Tosa, Rom. Rep. in Phys., 51(7-8-9-10), 917 (1999).
- 2. I. Deac, V. Cosma, V. Tosa, J. Mol. Struct. 266, 405 (1992).
- V. Tosa, S. Solimeno, R. Bruzzese, C. de Lisio, J. Mol. Struct. 267, 269 (1992).
- 4. D. B. McLay, C. R. Mann, Can. J. Chem., 40, 61 (1962).
- 5. E. T. Beeson, T. L. Weatherly, Q. Williams, J. Chem. Phys., 37, 2926 (1962).
- 6. J. V. Magill, K. M. Gough, W. F. Murphy, Spectrochim. Acta, 42A, 705, (1986).
- J. M. Frisch, G. W. Trucks. H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. a. Jr. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochtreski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Romperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Callacombe, P. M. W. Gill, B. W. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Program Gaussian98, Gaussian Inc., Pittsburgh PA, 1998.
- A. Brown, D. C. McKean, J. L. Duncan Spectrochim. Acta, 44A, 553, (1988).