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ABSTRACT: The equilibrium structures, the binding energies, and the second-order
energy components of a series of hydrogen-bonded complexes involving acetylene are
studied. The strength of the binding energy of the selected systems (HF . . . HCCH,
HCl . . . HCCH, HCN . . . HCCH, and HCCH . . . HCCH) was different, ranging from a
very weak interaction to a strong interaction. Calculations have been carried out at both
the Hartree–Fock and correlated (second-order Møller–Plesset perturbation theory)
levels of theory, using several different basis sets [6-31G(d,p), 6-311G(d,p), 6-
31G��(d,p), 6-311G��(d,p), 6-31��G(2d,2p) and 6-311��G(2d,2p)]. The widely used
a posteriori Boys–Bernardi counterpoise (CP) correction scheme has been compared
with the a priori CHA/CE, CHA–MP2, and CHA–PT2 methods, using the chemical
Hamiltonian approach (CHA). The results show that at both levels the CP and the
appropriate CHA results are very close to each other. Only the monomer-based CHA-
PT2 theory gives slightly overcorrected results, reflecting that the charge transfer and
polarization effects are not taken into account in this method up to second order. We
have also applied our earlier developed energy decomposition scheme in order to
decompose the second-order energy contribution into different physically meaningful
components. The results show that at large and intermediate intermolecular distances,
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the second-order intermolecular contribution is almost equal to the sum of different
physically meaningful components (e.g., polarization, charge transfer, dispersion), while
at shorter distances the slightly strong overlap effects fairly disturb this simple
additivity. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 101: 186–200, 2005

Key words: basis set superposition error; chemical Hamiltonian approach;
intermolecular interactions; intermolecular perturbation theory

1. Introduction

I t is well known that hydrogen bonds play a key
role in biochemistry and biophysics, so their

accurate treatment is essential. At the theoretical
level, several quantum mechanical studies have
been performed in order to study these interactions
between different systems [1–4]. Most of the calcu-
lations are based on the supermolecular approach,
in which the interaction energy of the studied
dimer is obtained as an energy difference between
the supermolecule and the monomers. However,
this interaction energy often shows minima that are
too deep, especially for the case of weak hydrogen
bonds as the consequence of using finite basis sets
in the calculations. This phenomenon is called basis
set superposition error (BSSE) and it is attributable
to the fact that the description of the monomer is
actually better within the supermolecule than that
for the free monomers by applying the same basis
set. Thus, the BSSE is a purely mathematical effect
that appears only as a result of the use of finite basis
sets, leading to an incomplete description in the
individual monomers. Several numerical studies
and analytical considerations [5–7] show that the
amount of this BSSE effect can be very large even
for fairly large basis sets, so removing it in the
practical calculations is very important.

In our earlier works [8–11], we demonstrated
that these errors affect not only the interaction en-
ergies, but also their first- and second-order deriv-
atives, which can produce different changes in ge-
ometry structures and harmonic vibrational
frequency values. This effect was also shown by
other investigators [12, 13] in the case of
NCH . . . O3, HCCH . . . O3, and (HF)n, n � 3, 4 sys-
tems.

One of our purposes in the present work is to
calculate the structure of the interaction energy
minima and second-order energy components
(charge-transfer, polarization, dispersion, mixed
charge-transfer polarization, and cross-compo-
nents) for selected hydrogen-bonded (COH . . . �)
systems at the level of both Hartree–Fock (HF) and

second-order Møller–Plesset perturbation theory
(MP2), properly taking into account the BSSE. To
treat this latter effect, we use both the well-known
a posteriori counterpoise correction (CP) scheme
developed by Jansen and Ross [14] and, indepen-
dently, by Boys and Bernardi [15], as well as the a
priori-type chemical Hamiltonian approach (CHA)
constructed by Mayer [16, 17]. While in the former
approach the monomers are adjusted to the dimer
problem and the energies and other quantities of
the free monomers become distance dependent, the
CHA permits us to identify those terms of the Ham-
iltonian that are responsible for the BSSE effects. By
omitting these terms, one can obtain wave func-
tions free from artificial nonphysical delocaliza-
tions. Using this CHA scheme, several different
approaches have been developed at both the HF
[18–29] and correlated [30–38] levels of theory.

In contrast, we have also performed second-
order energy component analysis using a decom-
position scheme that was earlier developed based
on the CHA framework [39]. We study how depend
the different energy components in the second-
order interaction energy correction from the
strength of the hydrogen bonds and also from the
basis sets are applied.

The next section provides a brief description of
the methods employed. Next, the results for the
Acetylene (Ac) dimer, Ac . . . HCN, Ac . . . HCl,
and Ac . . . HF molecular systems are presented
in several different basis sets and the interaction
energies and their components are compared and
discussed. The conclusions are presented in the
final section.

2. Computational Methods

This section presents a brief summary of the
applied CHA methods (CHA/CE, CHA–MP2,
and CHA–PT2) and the CHA–PT2 energy decom-
position procedure presented in earlier papers
[14 –16].
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2.1. CHA/CE SCHEME

A conceptually different way of handling the
BSSE problem is to apply the a priori CHA devel-
oped by Mayer [16, 17]. The CHA procedure per-
mits the supermolecule calculations to remain con-
sistent with those for the free monomer performed
in their original basis sets. The most important as-
pect of Mayer’s approach is that one can divide the
Hamiltonian into two parts and omit those terms
that are responsible for the BSSE:

ĤBO � ĤCHA � ĤBSSE, (1)

where ĤBO is the original Born–Oppenheimer
Hamiltonian, ĤCHA is the BSSE-free part of the
Hamiltonian, while the second term on the right-
hand side corresponds to the BSSE. It should be
emphasized that because BSSE is not a physical
quantity, one cannot expect that the remaining part
of the Hamiltonian ĤCHA to be Hermitian. Apply-
ing this non-Hermitian BSSE-free CHA Hamilto-
nian ĤCHA and using the method of momenta in-
stead of the variational principle appropriate
Hartree–Fock-type CHA–SCF [19], equations were
derived in order to calculate BSSE-free wave func-
tions:

ĤCHA�CHA � ��CHA. (2)

As a result of several numerical and analytical con-
siderations [24–27] using this BSSE-free wave func-
tion, the energy of the system can be calculated as a
conventional expectation value of the original
Born–Oppenheimer Hamiltonian and not of the
chemical one. This is indicated by the expression,
CHA with conventional energy (CHA/CE). Here is
our working formula:

ECHA/CE �
��CHA�ĤBO��CHA�

��CHA��CHA�
. (3)

2.2. SUPERMOLECULE CHA–MP2 THEORY

While to obtain Hartree–Fock-type equations
from the CHA Hamiltonian is a relatively straight-
forward procedure, the generalization of it to the
Møller–Plesset perturbation theory was a bigger
task. As it was shown by Mayer [38], the appropri-
ate second-order energy can be obtained as follows.
First, one has to calculate the first-order CHA wave
function � using the non-Hermitian CHA Hamilto-
nian partitioned as ĤCHA � Ĥ0 � V̂CHA, where Ĥ0 is

the unperturbed Hamiltonian. This latter one is
built up from the CHA canonic molecular orbitals
and orbital energies, which are the solutions of the
appropriate CHA–SCF equations. It can be seen
that the perturbed V̂CHA operator is also non-Her-
mitian. The original Hermitian Born–Oppenheimer
Hamiltonian ĤBO can also be partitioned as a sum
of the same non-Hermitian unperturbed Hamilto-
nian Ĥ0 and some new (also non-Hermitian) per-
turbation V̂: V̂ � ĤBO � Ĥ0. Using the first-order
CHA wave function �, the generalized Hylleraas
functional J2 can easily be calculated:

J2 �
1

��0��0�
�2 Re	�Q̂��V̂��0�


� Re	���Ĥ0 � E0���
�, (4)

and the second-order energy will be given by

E	2
 �
��0�ĤBO��0�

��0��0�
� J2, (5)

where �0 is the unperturbed wave function, E0 is
the zero-order energy (Ĥ0�0 � E0�0), and Q̂ is the
projection operator to the orthogonal complement
to �0. These equations define our working formula
at the second-order perturbation level. This formal-
ism is called CHA–MP2 theory [32].

2.3. MONOMER-BASED CHA–PT2 THEORY

In this perturbation theory, only the orbitals and
orbital energies on which Ĥ0 is built up differ from
the previous case. Namely, here one starts from the
orbitals and orbital energies of the unperturbed free
monomers. The zero-order effective one-electron
Hamiltonian can be defined as the sum of the “ef-
fective” monomer Hartree–Fock operators. The un-
perturbed ground-state wave functions are chosen
as the antisymmetrized product of the monomer
ground-state wave functions. Applying the follow-
ing perturbation V̂CHA: (V̂CHA � ĤCHA � Ĥ0), the
first-order wave function can also be obtained and
the second-order BSSE-free energy contribution can
be calculated from Eq. (5) as before.

2.4. CHA–PT2 ENERGY DECOMPOSITION

In order to perform the decomposition of the
second-order energy contribution in the CHA–PT2
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framework, we should go back to the appropriate
first-order CHA wave function �, which is

��� �
1
4 �

i, j�A

occ �
p,q�A

virt ��pq�ij�
�p � �q � �i � �j

��ij
pq�

� �
i�A

occ �
p

virt ��p̃�V̂B
aux�i�

�p � �i
��i

p�

�
1
4 �

i�A

occ �
j�B

occ �
p,q

virt �� p̃q̃�ij�
�p � �q � �i � �j

��ij
pq� � 	A7 B
, (6)

where (A 7 B) indicates that all terms with mono-
mers A and B interchanged should be added. ��i

p�
and ��ij

pq� are singly and doubly excited determi-
nants in terms of the occupied and virtual mono-
mer orbitals. VB

aux is an auxiliary operator, defined
through its matrix element as

�p̃�V̂B
aux�i� � �p̃��

a�B

�Za

ra
�i� � �

j�B

occ

p̃j̃�ij . (7)

It can be seen that the first-order wave function
Eq. (6) is nothing other than the sum of different
terms that have well-defined physical meaning:

��� � ���intra-corr � ���pol � ���CT � ���disp � ���pol-CT.

(8)

In this sum, the first term ���intra-corr gives the in-
tramolecular correlation of the free monomers:

���intra-corr �
1
4 �

i, j�A

occ �
p,q�A

virt ��pq�ij�
�p � �q � �i � �j

��ij
pq�

� 	A7 B
. (9)

The ���pol comes from the second term of Eq. (5),
when the occupied and virtual orbitals are on the
same monomer. This term is called polarization:

���pol � �
i�A

occ �
p�A

virt ��p̃�V̂B
aux�i�

�p � �i
��i

p� � 	A7 B
. (10)

If the occupied and virtual orbitals are on differ-
ent monomers under the summations, the former

expression will describe the CT-type effects be-
tween the monomers:

���CT � �
i�A

occ �
p�B

virt ��p̃�V̂B
aux�i�

�p � �i
��i

p� � 	A7 B
. (11)

The third term in Eq. (5) gives the conventional
dispersion-type excitations if the virtual orbitals are
on different monomers:

���disp �
1
2 �

i�A

occ �
j�B

occ �
p�A

virt �
q�B

virt �� p̃q̃�ij�
�p � �q � �i � �j

��ij
pq�

� 	A7 B
. (12)

If the virtual orbitals are on the same monomers,
one can obtain a mixed term that corresponds to the
combined polarization–CT component of the first-
order wave function:

���pol-CT �
1
2 �

i�A

occ �
j�B

occ �
p,q�A

virt �� p̃q̃�ij�
�p � �q � �i � �j

��ij
pq�

� 	A7 B
. (13)

Using the above-described decomposition of the
first-order wave function, one can explicitly place
the different components of the first-order wave
function into Eq. (4), in order to obtain the explicit
formulae for the different BSSE-free second-order
interaction energy contributions that have special
physical meaning: J2

pol, J2
CT, J2

disp, and J2
pol–CT. It can

also be introduced the remaining term (denoted
cross-term) describing all overlap-caused interfer-
ences as the difference of the total J2 and of the
physical terms:

J2
cross-term � J2 � � J2

pol � J2
CT � J2

disp

� J2
pol–CT � EA

	2
 � EB
	2
�. (14)

Explicit expressions for the different J2 components
are given in Ref. [39]. We refer to this article for
further details.

3. Computational Details

The calculations were carried out partly in Hei-
delberg on a Hewlett-Packard cluster and partly in
Debrecen on a Pentium 200 PC and Compaq Alpha

HYDROGEN BONDS BETWEEN ACETYLENE AND PROTON DONOR SYSTEMS

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 189



running under Linux. The standard HF, MP2, and
CP-corrected HF, MP2 calculations were performed
by the Gaussian 98 computer code [40]. The CHA/
CE, CHA–MP2, CHA–PT2, and CHA–PT2-ED (en-
ergy decomposition)-type calculations were carried
out by generating the input data (integrals and
RHF orbitals) with a slightly modified version of
HONDO-8 [41].

In these calculations, the CHA–SCF code [19],
the CHA–MP2 program of Mayer and Valiron [32,
34], the CHA–PT2 [30, 31], and the CHA–PT2-ED
[39] were used. The different acetylene–complex
geometries were optimized using conventional
Hartree–Fock and second-order Møller–Plesset per-
turbation theories for each basis set. We considered
different standard Pople basis sets: 6-31G, 6-311G,
6-31��G, 6-311��G, 6-31G(d,p), 6-311G(d,p),
6-31��G(d,p), 6-311��G(d,p), 6-31��G(2d,2p),
and 6-311��G(2d,2p).

The conventional supermolecule geometries
were optimized at both the HF and MP2 levels,

applying the analytical gradient method included
in the Gaussian 98, while the CHA and CP-cor-
rected geometries were calculated by using numer-
ical gradient method (inverse parabolic interpola-
tion [42]) in internal coordinates, considering only
the intermolecular coordinates (one bond, two an-
gles, and three torsion angles) as geometry vari-
ables. To test the applicability of our numerical
gradient method, we have performed several sam-
ple calculations using both this latter method and
the analytical gradient technique built into the
Gaussian 98 program. As a consequence, there is
practically no difference between them for conven-
tional uncorrected cases.

4. Results and Discussion

The calculated results are summarized in four
tables from the weakest systems up to the stronger
interacting ones. Table I shows the values obtained
for the geometry (rHX) and the binding energy
(�Ac–Ac) of the Ac . . . Ac dimer, using the conven-
tional, CHA and BB schemes at both the Hartree–
Fock and second-order (MP2 and PT2-type) pertur-
bation levels of theory. In Table II, Table III, and
Table IV, similar results are given for the
Ac . . . HCN, Ac . . . HCl, and Ac . . . HF dimers, re-

FIGURE 1. Acetylene–acetylene geometry.

FIGURE 2. Acetylene–HCN geometry.

FIGURE 3. Acetylene–HCl geometry.

FIGURE 4. Acetylene–HF geometry.
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spectively. Figures 1–4 present the equilibrium ge-
ometries for the four studied systems. Figures 5–12
show the different components of the perturbation
expansion (EH–L, Heitler–London energy; J2, sec-
ond-order energy correction; J2

phys, second-order
“physical” term; J2

cross, second-order cross term; and
E2, total second-order energy), as well as the five
different components of the J2 energy ( J2

pol, polariza-
tion; J2

CT, charge-transfer; J2
disp, dispersion; J2

pol–CT,
combined polarization and charge-transfer; and J2

cross,
second-order cross term) for all four dimers.

BSSE-FREE GEOMETRIES AND INTERACTION
ENERGIES

Scheiner and Grabowski [1] presented an accu-
rate theoretical study for the molecular interaction
of the acetylene with different small proton accep-

tor complexes. These investigators studied the equi-
librium geometries, the interaction energies, and
the different proton donor molecular and intermo-
lecular deformations. In their work, they calculated
the BSSE corrections only in the interaction ener-
gies. In the present study, our aim is to study the
BSSE effects not only in the interaction energies, but
in the geometry conformations as well.

Ac . . . Ac

The weakest interacting system in our investiga-
tion is the Acetylene–Acetylene dimer for which the
configuration is presented in Figure 1. The equilib-
rium geometry and the binding energy for this
system were calculated for the uncorrected, the CP
and CHA-corrected cases at both the Hartree–Fock

TABLE I ______________________________________________________________________________________________
rHX intermolecular distance (in Å) and the �Ac–Ac intermolecular binding energy (in mH) for acetylene–acetylene
complex computed with Hartree–Fock (SCF, CHA–SCF, CP–SCF) and second-order many-body perturbation
theories (MP2, CHA–MP2, CHA–PT2, CP–MP2), using 6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p),
6-31��G(2d,2p), and 6-311��G(2d,2p) basis sets. The number of basis functions is given in parentheses.

Basis set Method rHX �Ac–Ac Method rHX �Ac–Ac

6-31G(d,p) SCF 2.94820 �2.062 MP2 2.63614 �3.340
(80) CP–SCF 2.99233 �1.334 CP–MP2 2.81460 �1.831

CHA–SCF 2.96849 �1.555 CHA–MP2 2.76321 �2.096
— — CHA–PT2 2.75428 �2.306

6-311G(d,p) SCF 3.03381 �1.527 MP2 2.74232 �2.639
(100) CP–SCF 3.07364 �1.202 CP–MP2 2.85032 �1.786

CHA–SCF 3.03954 �1.308 CHA–MP2 2.83744 �1.876
— — CHA–PT2 2.80003 �2.236

6-31��G(d,p) SCF 3.05348 �1.281 MP2 2.63438 �3.254
(100) CP–SCF 3.08834 �1.122 CP–MP2 2.85429 �1.662

CHA–SCF 3.08194 �1.125 CHA–MP2 2.85087 �1.707
— — CHA–PT2 2.84801 �1.994

6-311��G(d,p) SCF 3.07575 �1.265 MP2 2.69877 �3.136
(120) CP–SCF 3.10959 �1.104 CP–MP2 2.84345 �1.770

CHA–SCF 3.10526 �1.120 CHA–MP2 2.83835 �1.772
— — CHA–PT2 2.83193 �2.110

6-31��G(2d,2p) SCF 3.04418 �1.302 MP2 2.68119 �2.988
(136) CP–SCF 3.06961 �1.182 CP–MP2 2.77396 �1.998

CHA–SCF 3.07314 �1.139 CHA–MP2 2.77858 �2.126
— — CHA–PT2 — —

6-311��G(2d,2p) SCF 3.07063 �1.347 MP2 2.69619 �2.621
(156) CP–SCF 3.08962 �1.041 CP–MP2 2.74883 �2.127

CHA–SCF 3.08458 �1.133 CHA–MP2 2.74192 �2.112
— — CHA–PT2 — —
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and second-order Møller–Plesset perturbation lev-
els of theory, using six different basis sets. [Cal-
culations with the CHA–PT2 method using
6-31��G(2d,2p) and 6-311��G(2d,2p) basis sets
are missing because of the large memory usage.] In
Table I we can observe the BSSE dependence of the
rHX distance, especially for smaller basis sets, but
this effect decreases as the basis set applied becom-
ing more complete. In case of the 6-311��G(2d,2p)
basis set we found �0.02 Å and �0.05 Å differences
between the uncorrected and the BSSE-corrected
results for HF and MP2 levels. In contrast, it can be
emphasized that these corrections are not so signif-
icant at the HF level, but at the perturbation level
they are still important. Similar statement can be
drawn for the binding energies presented in the
same table. In this case, the magnitude of the BSSE
corrections are more considerable, they are about

8–15% from the value of the interaction energies.
Moreover, the second-order component in the bind-
ing energy is almost double, about 
E(2) � 
EHF �
�1.0 mH compared with the HF results, which
allow us to carry out far more accurate calculations
with the MP4 perturbation method. From this latter
calculation (which we have performed), we found
that the difference between the CP-corrected sec-
ond-order and the fourth-order corrections, using
the 6-31��G(2d,2p) basis set is not so important
(
E(4) � 
E(2) � 0.18 mH).

Ac . . . HCN

The second molecular complex that was selected
to our investigation is the Acetylene–HCN system,
which forms a slightly stronger complex than the
Acetylene–Acetylene dimer. Similar methods and

TABLE II ______________________________________________________________________________________________
rHX intermolecular distance (in Å) and the �Ac–HCN intermolecular binding energy (in mH) for acetylene–HCN
complex computed with Hartree–Fock (SCF, CHA–SCF, CP–SCF) and second-order many-body perturbation
theories (MP2, CHA–MP2, CHA–PT2, CP–MP2), using 6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p),
6-31��G(2d,2p), and 6-311��G(2d,2p) basis sets. The number of basis functions is given in parentheses.

Basis set Method rHX �Ac–HCN Method rHX �Ac–HCN

6-31G(d,p) SCF 2.72682 �3.568 MP2 2.52007 �4.999
(75) CP–SCF 2.75640 �3.029 CP–MP2 2.64855 �3.331

CHA–SCF 2.74136 �3.353 CHA–MP2 2.62165 �3.683
CHA–PT2 2.59951 �4.016

6-311G(d,p) SCF 2.81812 �3.004 MP2 2.61262 �3.982
(94) CP–SCF 2.84409 �2.633 CP–MP2 2.69865 �3.041

CHA–SCF 2.83091 �2.766 CHA–MP2 2.69300 �3.139
CHA–PT2 2.65029 �3.855

6-31��G(d,p) SCF 2.81133 �2.739 MP2 2.53255 �4.657
(94) CP–SCF 2.83107 �2.539 CP–MP2 2.69177 �2.932

CHA–SCF 2.82736 �2.512 CHA–MP2 2.68835 �3.023
CHA–PT2 2.68857 �3.496

6-311��G(d,p) SCF 2.84459 �2.631 MP2 2.59507 �4.343
(113) CP–SCF 2.86560 �2.422 CP–MP2 2.69466 �2.975

CHA–SCF 2.86320 �2.464 CHA–MP2 2.67959 �3.037
— CHA–PT2 — —

6-31��G(2d,2p) SCF 2.80059 �2.795 MP2 2.55980 �4.319
(127) CP–SCF 2.81406 �2.620 CP–MP2 2.61916 �3.361

CHA–SCF 2.81245 �2.563 CHA–MP2 2.62203 �3.508
CHA–PT2 2.62404 �4.048

6-311��G(2d,2p) SCF 2.82597 �2.731 MP2 2.55379 �4.049
(146) CP–SCF 2.83359 �2.615 CP–MP2 2.60199 �3.482

CHA–SCF 2.83361 �2.553 CHA–MP2 2.59865 �3.441
CHA–PT2 — —
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basis sets to those in the previous case were used to
find the optimized geometry structures and their
interaction energies. The results are presented in
Table II. Because of the similar memory require-
ment to that in the previous case, we were unable to
perform our calculation with the CHA–PT2 method
using the 6-311��G(2d,2p) basis set. As for the
6-311��G(d,p) basis, it was fairly complicated to
perform the optimization procedure because the
potential energy surface (PET) is almost flat. In this
case, the BSSE corrections at the HF level for the rHX
distance are not so important (�0.015 Å), while at
the second-order perturbation level they are still
reasonably large quantities (�0.05 Å). A similar
tendency holds for the binding energies, where we
obtained ��0.1 mH for the HF methods and 0.6–
1.0 mH for the correlated level. Even using the
largest 6-311��G(2d,2p) basis set, the difference

between the MP2 and the MP4 results is: 
E(4) �

E(2) � 0.2 mH, which is almost five times smaller
than this one between the appropriate HF and MP2
calculations (
E(2) � 
EHF ��0.9 mH). The exper-
imental values [43, 44] obtained for the rCX � 3.655
Å are in good agreement with our BSSE-free results:
3.666 Å for the MP2–CHA/6-311��G(2d,2p) and
3.669 Å for the MP2–CP/6-311��G(2d,2p).

Ac . . . HCl

Table III presents the results for the Acetylene–
HCl dimer. The optimized geometry and the
binding energy were calculated similarly to the
first and second cases. For this system, we were
able to obtain converged results for all the ap-
plied basis sets. It was found that even including
polarization and diffuse functions in the basis

TABLE III _____________________________________________________________________________________________
rHX intermolecular distance (in Å) and the �Ac–HCl intermolecular binding energy (in mH) for acetylene–HCl
complex computed with Hartree–Fock (SCF, CHA–SCF, CP–SCF) and second-order many-body perturbation
theories (MP2, CHA–MP2, CHA–PT2, CP–MP2), using 6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p),
6-31��G(2d,2p), and 6-311��G(2d,2p) basis sets. The number of basis functions is given in parentheses.

Basis set Method rHX �Ac–HCl Method rHX �Ac–HCl

6-31G(d,p) SCF 2.58591 �3.719 MP2 2.38026 �5.375
(64) CP–SCF 2.65698 �2.798 CP–MP2 2.52444 �3.562

CHA–SCF 2.59997 �3.103 CHA–MP2 2.51570 �3.769
CHA–PT2 2.51100 �3.939

6-311G(d,p) SCF 2.70914 �2.864 MP2 2.44384 �4.331
(83) CP–SCF 2.73921 �2.532 CP–MP2 2.53906 �3.428

CHA–SCF 2.72487 �2.644 CHA–MP2 2.51309 �3.573
CHA–PT2 2.55655 �3.751

6-31��G(d,p) SCF 2.69147 �2.655 MP2 2.40457 �5.162
(79) CP–SCF 2.74092 �2.285 CP–MP2 2.57115 �3.088

CHA–SCF 2.73520 �2.268 CHA–MP2 2.57994 �3.069
CHA–PT2 2.58954 �3.315

6-311��G(d,p) SCF 2.72949 �2.540 MP2 2.43450 �4.969
(98) CP–SCF 2.77807 �2.226 CP–MP2 2.55728 �3.184

CHA–SCF 2.77595 �2.253 CHA–MP2 2.53799 �3.267
CHA–PT2 2.61669 �3.372

6-31��G(2d,2p) SCF 2.69983 �2.523 MP2 2.34086 �5.265
(106) CP–SCF 2.72977 �2.323 CP–MP2 2.41242 �4.064

CHA–SCF 2.73114 �2.250 CHA–MP2 2.44315 �3.970
CHA–PT2 2.51325 �3.968

6-311��G(2d,2p) SCF 2.73871 �2.445 MP2 2.33442 �5.130
(125) CP–SCF 2.75334 �2.258 CP–MP2 2.40203 �4.210

CHA–SCF 2.75454 �2.196 CHA–MP2 2.38542 �4.282
CHA–PT2 2.48544 �4.169
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sets, the BSSE amounts for the rHX distance at the
HF level are almost negligible, while at the sec-
ond-order perturbational level, these corrections
are much larger (0.06 – 0.1 Å). For the binding
energies, we obtained similar results; i.e., the HF-
type corrections are insignificant, while the BSSE-
corrected MP2 and PT2 results are more than 1.0
mH higher than the appropriate uncorrected MP2
values. Considering the MP4 calculation, a simi-
lar tendency holds to that in the case of our
previously studied system, namely applying the
largest basis set as 6-311��G(2d,2p) the differ-
ence in the interaction energies using the HF and
MP2 methods is 
E(2) � 
EHF ��1.9 mH, while
this quantity calculating the MP2 and MP4 cor-
rections is 
E(4) � 
E(2) � 0.6 mH. It can also be
commented that this latter one is the largest value
among our studied systems. The experimental

value is (rClX � 3.699 Å), given by Legon et al.
[45], and the BSSE-corrected results give 3.665 Å
for the MP2–CHA/6-311��G(2d,2p) and 3.682 Å
for the MP2-CP/6-311��G(2d,2p).

Ac . . . HF

The strongest interacting system in this study is
the Acetylene–HF dimer (see Table IV). The geom-
etry optimization and the binding energy calcula-
tion were made using the same basis sets and meth-
ods as before. Accordingly, more or less the same
conclusions can be drawn again for the rHX inter-
molecular distance as in the earlier described cases.
That is, the HF results do not show a reasonably
large BSSE content, especially when the polariza-
tion and diffuse functions are included in the ap-
plied basis set. However, the MP2 corrections are

TABLE IV _____________________________________________________________________________________________
rHX intermolecular distance (in Å) and the �Ac–HF intermolecular binding energy (in mH) for acetylene–HF
complex computed with Hartree–Fock (SCF, CHA–SCF, CP–SCF) and second-order many body perturbation
theories (MP2, CHA–MP2, CHA–PT2, CP–MP2), using 6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p),
6-31��G(2d,2p), and 6-311��G(2d,2p) basis sets. The number of basis functions is given in parentheses.

Basis set Method rHX �Ac–HF Method rHX �Ac–HF

6-31G(d,p) SCF 2.34731 �6.025 MP2 2.18251 �7.917
(60) CP–SCF 2.40959 �4.921 CP–MP2 2.33711 �5.202

CHA–SCF 2.38622 �5.189 CHA–MP2 2.32204 �5.458
CHA–PT2 2.36319 �5.539

6-311G(d,p) SCF 2.36702 �5.268 MP2 2.15495 �6.918
(75) CP–SCF 2.45122 �4.309 CP–MP2 2.34799 �4.634

CHA–SCF 2.44020 �4.475 CHA–MP2 2.31748 �4.982
CHA–PT2 2.36236 �5.313

6-31��G(d,p) SCF 2.38809 �4.813 MP2 2.16810 �7.350
(75) CP–SCF 2.40277 �4.601 CP–MP2 2.27327 �5.445

CHA–SCF 2.40398 �4.575 CHA–MP2 2.28340 �5.347
CHA–PT2 2.38930 �5.171

6-311��G(d,p) SCF 2.40966 �4.752 MP2 2.17910 �6.978
(90) CP–SCF 2.41619 �4.358 CP–MP2 2.26696 �5.158

CHA–SCF 2.41379 �4.392 CHA–MP2 2.24481 �5.318
CHA–PT2 2.34807 �5.131

6-31��G(2d,2p) SCF 2.34020 �4.915 MP2 2.10752 �7.565
(102) CP–SCF 2.34950 �4.727 CP–MP2 2.17169 �6.303

CHA–SCF 2.35354 �4.735 CHA–MP2 2.19966 �6.126
CHA–PT2 2.29199 �5.930

6-311��G(2d,2p) SCF 2.34811 �4.883 MP2 2.14221 �7.209
(117) CP–SCF 2.36032 �4.741 CP–MP2 2.19561 �6.161

CHA–SCF 2.36358 �4.669 CHA–MP2 2.18706 �6.205
CHA–PT2 2.28946 �6.067
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still important. As for the binding energies, the HF
level hardly gives any BSSE cerrection, but at the
MP2 level, the energy differences remain �1.5 mH.
The difference between the MP2 and MP4 correc-
tions in the 6-311��G(2d,2p) basis set is almost as
great as in the first two cases where they were about

E(4) � 
E(2) � 0.11 mH, while this quantity be-
tween the HF and MP2 corrections is much larger
(
E(2) � 
EHF � �1.5 mH). For this dimer, the
experimental result is rFX � 3.075 Å, obtained by
Read and Flygàre [46], and the BSSE-free intermo-
lecular distances are 3.113 Å for the MP2–CHA/6-

311��G(2d,2p) and 3.122 Å for the MP2-CP/6-
311��G(2d,2p).

4.2. SECOND-ORDER ENERGY

The calculations show that not only the second-
order energy corrections itself, but also the BSSE
content of these quantities in the interaction ener-
gies, are very important. To study these quantities
systematically, we apply the CHA–PT2 second-or-
der BSSE-free perturbation method. This scheme is
able to handle the different components (charge-

FIGURE 5. Potential curves of the Ac . . . Ac system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-311��G(d,p)] as a function of the rHX hydrogen bond length. The curves display four different en-
ergy components: EH–L, Heitler–London energy; J2, second-order energy correction; J2

phys, second-order “physical”
term; J2

cross, second-order “cross” term. E2 is the total second-order energy.

FIGURE 6. Potential curves of the Ac . . . HCN system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display four different en-
ergy components: EH–L, Heitler–London energy; J2, second-order energy correction; J2

phys, second-order “physical”
term; J2

cross, second-order “cross” term. E2 is the total second-order energy.
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transfer, polarization, dispersion, combined charge-
transfer polarization, and cross-components) of the
second-order energy, even if the SCF effects (polar-
ization and delocalizations) are accounted for only
up to second order. An overview of the results of
our calculations is given in Figures 5–8: the total
second-order energies (Fig. 5: Ac . . . Ac, Fig. 6:
Ac . . . HCN, Fig. 7: Ac . . . HCl, and Fig. 8:
Ac . . . HF) are compared with the Heitler–London
ones representing the sum of the zero- and first-
order PT contributions, the resulting second-order
interaction contribution J2, and its decomposition

into “physical” and interference (“cross”) compo-
nents. It can be seen that the second-order results
are strongly basis and system dependent, which is
obvious because, for instance, the dispersion can be
described appropriately only by using significantly
large basis set. But at the same time, it can also be
observed that the “cross”-component J2

cross shows
an important increase when we use diffuse func-
tions together with d- and p-polarization ones, and
that afterward, using 2d and 2p functions, the con-
tribution of J2

cross became smaller. At the short in-
termolecular distances, the contributions of the

FIGURE 7. Potential curves of the Ac . . . HCl system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display four different en-
ergy components: EH–L, Heitler–London energy; J2, second-order energy correction; J2

phys, second-order “physical”
term; J2

cross, second-order “cross” term. E2 is the total second-order energy.

FIGURE 8. Potential curves of the Ac . . . HF system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display four different en-
ergy components: EH–L, Heitler–London energy; J2, second-order energy correction; J2

phys, second-order “physical”
term; J2

cross, second-order “cross” term. E2 is the total second-order energy.
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“physical” and “cross”-terms are quite different,
while at very large intermolecular separations
when the overlap tends to zero, the “cross-terms”
would vanish. It can be observed that using (2d,2p)
polarization functions, near the intermolecular min-
imum, the J2

cross contribution is no longer dominant.
The individual second-order energy components

( J2
pol, polarization; J2

CT, charge-transfer; J2
disp, disper-

sion; J2
pol–CT, combined polarization and charge-

transfer, and J2
cross, second-order “cross” term) dis-

cussed in section 2.4 are displayed in Figures 9–12.

At large intermolecular separations the sum of the
“physical” energy components is not distinguish-
able from the true second-order energy contribu-
tion, in accord with the expectation. For basis sets
that do not contain diffuse functions, or that have
more polarization functions, the “cross”-compo-
nent remains comparatively small, even at shorter
distances. When we use diffuse functions for which
the intermolecular overlap becomes considerable,
the behavior of the different energy components is
not unambiguous. Following the magnitudes of the

FIGURE 9. Energy components for the Ac . . . Ac system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-311��G(d,p)] as a function of the rHX hydrogen bond length. The curves display five different com-
ponents of the J2 energy: J2

pol, polarization; J2
CT, charge-transfer; J2

disp, dispersion; J2
pol–CT, combined polarization and

charge-transfer; J2
cross, second-order “cross” term.

FIGURE 10. Energy components for the Ac . . . HCN system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display five different
components of the J2 energy: J2

pol, polarization; J2
CT, charge-transfer; J2

disp, dispersion; J2
pol–CT, combined polarization

and charge-transfer; J2
cross, second-order “cross” term.
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different “physical” energy components near the
equilibrium state, it can be ascertained that the CT
component provides the dominant contribution.
This latter one does not have as strong a basis
dependence as it has for the dispersion part. This
effect is emphasized more in the case of the
Ac . . . HF and the Ac . . . HCl dimers. Dispersion
contributions are also significant for all four molec-
ular complexes. Note that these two components
have an important influence on the second-order
energy J2. At the same time, the second-order po-
larization and combined polarization and charge

transfer components bring down very fast as the
intermolecular distance increases, in order to influ-
ence the results. It is also important to know how
changes can induce the first-order polarization ef-
fects in the results. These contributions could be
estimated if we consider the difference between the
CHA–MP2 and the CHA–PT2 values. It can be
observed from the tables that in the case of
the Ac . . . HF and the Ac . . . HCN systems these
effects are important, while for the Ac . . . HCl
and the Ac . . . AC ones their contributions are
smaller.

FIGURE 11. Energy components for the Ac . . . HCl system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display five different
components of the J2 energy: J2

pol, polarization; J2
CT, charge-transfer; J2

disp, dispersion; J2
pol–CT, combined polarization

and charge-transfer; J2
cross, second-order “cross” term.

FIGURE 12. Energy components for the Ac . . . HF system calculated in three different basis sets [6-31G(d,p),
6-31��G(d,p), 6-31��G(2d,2p)] as a function of the rHX hydrogen bond length. The curves display five different
components of the J2 energy: J2

pol, polarization; J2
CT, charge-transfer; J2

disp, dispersion; J2
pol–CT, combined polarization

and charge-transfer; J2
cross, second-order “cross” term.
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5. Conclusions

Considering the results, it can be concluded that
the BSSE contents are fairly significant when the per-
turbation corrections are calculated to study the inter-
actions in weakly bonded molecular systems. The
second-order corrections were found to be very large
compared to the HF results; this finding stimulates us
to perform a detailed study in the field of second-
order energy decompositions. It was also obtained
that the fourth-order corrections in some cases can
yield important contributions in the intermolecular
interaction energies (see Acetylene–HCl). This work
demonstrates that the experimental results are in
good agreement with our BSSE-free values calculated
for different intermolecular distances, except for the
Ac . . . HF dimer. The second-order energy is domi-
nated by the charge transfer and the dispersion com-
ponents; however, at a shorter intermolecular dis-
tance, the “cross” term would be important.
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21. Mayer, I.; Vibók, Á.; Halász, G. J.; Valiron, P. Int J Quantum
Chem 1996, 57, 1049; Halász, G. J.; Vibók, Á.; Valiron, P.;
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26. Mayer, I.; Vibók, Á. Int J Quantum Chem 1991, 40, 139.
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