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ABSTRACT: The influence of basis set superposition error (BSSE) in optimized
geometries, force constants and intermolecular harmonic vibrational frequencies of the
ammonia–ammonia dimer have been studied both at the Hartree–Fock and correlated
(second-order Møller–Plesset perturbation theory) levels of theory using several
different basis sets as (6-31G, 6-311G, 6-31��G, 6-311��G, 6-31G(d,p), 6-311G(d,p),
6-31��G(d,p) 6-311��G(d,p) and 6-311��G(2d,2p)). The widely used a posteriori
Boys–Bernardi “counterpoise” (CP) correction scheme has been compared with the a
priori method utilizing the chemical Hamiltonian approach (CHA). The results show
that practically there is no difference between these two methods, so the a priori CHA
scheme can be considered as an ultimate solution of the BSSE problem. It is also
concluded that the BSSE influence is very significant, so removing this effect is very
important. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 99: 585–593, 2004

Key words: basis set superposition error; chemical Hamiltonian approach; harmonic
vibrational frequencies; intermolecular interactions
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1. Introduction

R ecently a number of different theoretical
[1–8] and experimental [9–16] methods have

been developed to study the structures of the am-
monia–ammonia hydrogen-bonded complex. Con-
sidering the experimental data, it has been gener-
ally accepted that the ammonia dimer may have a
linear hydrogen-bonded structure, but in 1985 Nel-
son et al. [11] gave strong evidence for a cyclic
rather than linear structure by microwave study.
On the other hand, the theoretical studies showed
that one can find stationary points on the NH3–NH3
with two Cs and C2h symmetries [4], respectively. In
1994 Olthof et al. [12] proposed a new potential
with parameters for ammonia dimer by calculating
the six-dimensional vibration–rotation–tunneling
states, which were constructed from previous ab
initio results and also were adjusted to reproduce
the interchange splittings in the far-infrared (FIR)
spectrum. Using this new potential it was possible
to explain the existing experimental FIR data and
other observed properties such as the decreased
dipole moment of (ND3)2 compared to (NH3)2. The
Olthof’s potential shows that the ammonia dimer
has an intermediate structure between the cen-
trosymmetric cyclic and the linear hydrogen-
bonded structure which could not have been ob-
tained before by pure ab initio study. Almost all the
theoretical (perturbational and density functional
theories) studies have shown a linear hydrogen-
bonded structure, except Lee and Park’s work [4]
who predict the aforementioned intermediate struc-
ture using a series of correlation consistent basis
sets, cc-pVXZ and aug-cc-pVXZ (X � D, T, Q) at the
Hartree–Fock (HF), second-order and fourth-order
Møller–Plesset perturbation theory (MP2, MP4) lev-
els.

The potential energy surface appears to be very
flat near its equilibrium structure, and the values of
the equilibrium energies belonging to the different
symmetries are very close to each other and depend
strongly upon the basis sets and the methods ap-
plied. The focal point of these studies was to find
the global equilibrium structure and characteristic
features of the PES of these dimers. In this paper,
we examine the BSSE effects of equilibrium struc-
tures, force constants and harmonic vibrational fre-
quencies of the ammonia–ammonia dimer using
Hartree–Fock method and Møller–Plesset perturba-
tion theory. Our aim is to give a better and much
more accurate description for these quantities. Most

of the calculations for the hydrogen-bonded com-
plexes are based on the supermolecular approach,
in which the interaction energy of the dimer is
obtained as an energy difference between the su-
permolecule and the monomers. However, this in-
teraction energy often shows minima that are too
deep, especially for the case of weakly bonded in-
termolecular systems, as a consequence of using
finite basis sets in the calculations. This phenome-
non is called “basis set superposition error,” and it
is due to the fact that the description of the mono-
mer is actually better within the supermolecule
than that which one has for the free monomers by
applying the same basis set. So, the BSSE is a purely
“mathematical effect” that appears only due to the
use of finite basis sets, leading to an incomplete
description in the individual monomers. Several
numerical studies and analytical considerations
[17–19] show that the magnitude of this BSSE effect
can be very large even for fairly large basis sets, so
removing it in the practical calculations is very
important. Different techniques have been pro-
posed [20–26] to correct this artificial effect.

More than 30 years ago, Jansen and Ros [20] and,
independently, Boys and Bernardi [21] suggested
an a posteriori “counterpoise correction” (CP)
scheme of calculating the monomer energies in the
same basis set as used for the supermolecule. This
means that the description of the monomers is ad-
justed to the dimer problem, and the energies and
other quantities of the free monomers become dis-
tance-dependent.

In 1983, Mayer proposed a new a priori proce-
dure to tackle the BSSE problem. This is the so-
called “chemical Hamiltonian approach” (CHA)
[27, 28], which permits one to identify those terms
of the Hamiltonian that are responsible for the BSSE
effects. By omitting these terms, one can obtain
wave functions that are free from artificial non-
physical delocalizations. Using this CHA scheme,
several different approaches have been developed
both at the HF [29–39] and correlated [40–47] levels
of theory.

According to previous studies, the results ob-
tained from the Boys–Bernardi and CHA methods
are very close to each other, despite the fact that
these schemes are conceptually very different. In
this work, we apply both methods in order to study
the structures, the force constants and harmonic
vibrational frequencies of the ammonia–ammonia
hydrogen-bonded complex. Similar studies have
been performed in an our earlier work [48] for the
hydrogen fluoride and water dimers.
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The methods employed (CP, CHA/CE, and
CHA/MP2) are briefly explained in the section 2. In
section 3, the results for the ammonia–ammonia
dimer are presented in several different basis sets,
and the force constants and harmonic vibrational
frequencies obtained are compared and discussed.
The conclusions of the paper are given in the final
section.

2. Methods Applied (CP, CHA/CE and
CHA/MP2)

In this section, the CP and CHA methods pre-
sented in earlier papers [20, 21, 27] are briefly re-
viewed.

2.1. CP SCHEME

The most popular posteriori method correcting
the BSSE is the Boys–Bernardi counterpoise correc-
tion (CP) scheme introduced by Jansen and Ross
[20] and, independently, by Boys and Bernardi [21].
Applying this CP scheme one has to recalculate the
monomers in the basis of the whole supermolecule
for every geometrical arrangement. The CP-cor-
rected interaction energy �ECP can be defined as the
difference of the supermolecule and monomer en-
ergies, all computed in the same supermolecule
basis set:

�EAB
CP � EAB�AB� � EA�AB� � EB�AB�. (1)

The uncorrected binding energy �Eunc. can be ob-
tained as

�EAB
unc. � EAB�AB� � EA�A� � EB�B�. (2)

Using Eqs. (1) and (2), one can define the BSSE
content in the interaction energy as

�EBSSE � �EAB
unc. � �EAB

CP � EA�AB� � EA�A�

� EB�AB� � EB�B�. (3)

According to the Eq. (3), the CP-corrected potential
energy surface (PES) of the dimer becomes

ECP�AB� � EAB
unc.�AB� � �EBSSE � EAB

unc.�AB� � EA�AB�

� EA�A� � EB�AB� � EB�B�. (4)

Using Eq. (4), in addition to the monomer energies
one has to calculate three different energy values
[29] at every geometrical arrangement of the system
in order to determine the CP-corrected PES.

2.2. CHA SCHEME

A conceptually different way of handling the
BSSE problem is to apply the a priori “chemical
Hamiltonian approach” (CHA) introduced by
Mayer [27, 28]. The CHA procedure permits the
supermolecule calculations to keep consistency
with those for the free monomer performed in their
original basis sets. The most important aspect of
Mayer’s scheme is that one can devide the Hamil-
tonian into two parts and omit those terms that are
responsible for the BSSE:

ĤBO � ĤCHA � ĤBSSE. (5)

Here ĤBO is the original Born–Oppenheimer Ham-
iltonian, ĤCHA is the BSSE-free part of the Hamil-
tonian, while the second term on the right hand
side corresponds to the BSSE. It must be empha-
sized that, as BSSE is not a physical quantity, one
cannot expect the remaining part of the Hamilto-
nian ĤCHA to be Hermitian. Applying this non-
Hermitian BSSE-free CHA Hamiltonian ĤCHA and
using the method of momenta instead of the vari-
ational principle appropriate Hartree–Fock type
CHA-SCF [30] equations were derived in order to
calculate BSSE-free wave functions:

ĤCHA�CHA � ��CHA. (6)

As a result of several numerical and analytical con-
siderations [34–37] using this BSSE-free wave func-
tion the energy of the system can be calculated as a
conventional expectation value of the original
Born–Oppenheimer Hamiltonian and not of the
“chemical” one. (This is indicated by the expression
“CHA with conventional energy,” CHA/CE.) Here
is our working formula:

ECHA/CE �
��CHA�ĤBO��CHA	

��CHA��CHA	
. (7)

While obtaining Hartree–Fock-type equations from
the CHA Hamiltonian is a relatively straightfor-
ward procedure, the generalization of it to the
Møller–Plesset perturbation theory was a bigger
task. As it was shown by Mayer [49], the appropri-

THE AMMONIA–AMMONIA DIMER

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 587



ate second-order energy can be obtained as follows.
Firstly, one has to calculate the first-order CHA
wave function � by using the non-Hermitian Ham-
iltonian partitioned as ĤCHA � Ĥ0 � V̂CHA, where
Ĥ0 is the unperturbed Hamiltonian. The perturbed
V̂CHA operator is also non-Hermitian because it is
built up of the nonorthogonal eigenvectors of the
non-Hermitian CHA-SCF equations [30]. The orig-
inal Hermitian Born–Oppenheimer Hamiltonian
ĤBO can also be partitioned as a sum of the same
non-Hermitian unperturbed Hamiltonian Ĥ0 and
some new (also non-Hermitian) perturbation V̂: V̂
� ĤBO 
 Ĥ0. Using the first-order CHA wave func-
tion �, the generalized Hylleraas functional J2 can
easily be calculated:

J2 �
1

��0��0	
�2 Re��Q̂��V̂��0	

� Re����Ĥ0 � E0��	��, (8)

and the second-order energy will be given by

E�2� �
��0�ĤBO��0	

��0��0	
� J2. (9)

Here �0 is the unperturbed wave function, E0 is the
zero-order energy (Ĥ0�0 � E0�0), and Q̂ is the
projection operator an to the orthogonal comple-
ment to �0. These equations define our working
formula at the second order perturbation level. This
formalism is called “CHA/MP2” theory [42].

3. Results and Discussion

The calculations were carried out partly in Hei-
delberg on a Hewlett-Packard cluster and partly in
Debrecen on a Pentium 200 PC and Compaq Alpha
running under Linux. The standard HF, MP2 and
the CP-corrected HF, MP2 calculations were per-
formed with the Gaussian 98 software [50]. The
CHA/CE- and CHA/MP2-type calculations were
done by generating the input data (integrals and
RHF orbitals) with a slightly modified version of
HONDO-8 [51].

In these calculations the CHA/SCF code [30] and
the CHA/MP2 program of Mayer and Valiron [42,
44] were used. For the frequency calculations based
on Wilson’s G-F method, the program written by
Beu [52] was applied. The NH3–NH3 dimer geom-
etries was optimized using conventional Hartree–

Fock and second-order Møller–Plesset perturbation
theories for each basis set. We considered different
standard Pople basis sets as 6-31G, 6-311G, 6-31��G,
6-311��G, 6-31G(d,p), 6-311G(d,p), 6-311��G(d,p)
6-311��G(d,p), and 6-311��G(2d,2p).

The conventional supermolecule geometries
were optimized both at HF and MP2 levels apply-
ing the analytical gradient method included in
Gaussian 98, while the CHA and CP-corrected ge-
ometries were calculated by using a numerical gra-
dient method (inverse parabolic interpolation [53])
in internal coordinates. To test the applicability of
our numerical gradient method, we performed sev-
eral sample calculations using both this latter
method and the analytical gradient built into
Gaussian 98, respectively. As a consequence, there
is practically no difference between them for con-
ventional uncorrected cases; we have also per-
formed similar calculations to check the values of
the force constans and harmonic vibrational fre-
quencies. The uncorrected HF and MP2 results for
the force constants (in internal coordinates) and for
the harmonic vibrational frequencies were obtained
by using the standard routines of Gaussian 98. As
for the CHA and CP-corrected calculations, the nu-
merical second derivatives of the energies were first
calculated to obtain the CHA and CP force con-
stants, and then the NOMAD program [52] was
applied to obtain the appropriate CHA and CP
harmonic vibrational frequencies. As we were in-
terested in the BSSE content in the interaction en-
ergies, only those components of the force constant
matrix were recalculated which correspond to in-
termolecular interactions.

The results calculated are summarized in Tables
I–III. Table I shows the results obtained for the
geometry of the dimer for the conventional, CHA,
and Boys–Bernardi schemes both at the Hartree–
Fock and second-order Møller–Plesset perturbation
levels of theory. Table II contains the results ob-
tained for the diagonal force constants of the dimer
for the uncorrected, CHA, and CP-corrected cases
both at the Hartree–Fock and second-order Møller–
Plesset perturbation levels of theory. In Table III,
we present the conventional, CHA, and CP-cor-
rected results both at the HF and second-order
Møller–Plesset perturbation levels of theory for the
intermolecular harmonic vibrational frequencies
(�2 
 �6) of the ammonia–ammonia dimer.

A full BSSE-free geometry optimization has been
reported by Muguet et al. [2, 3] using an a priori
BSSE exclusion technique (BSSE-MCSCF) based on
the localized molecular orbital method. Their result
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also shows an intermediate geometry configura-
tion, but the �HNN � 53.2° and �NNH � 39.7° (Fig.
1a) are much closer to the cyclic structure than the
linear hydrogen-bonded one, while our values are
closer to the linear configuration (�HNN � 75.9° and
�NNH � 17.4° in CHA using 6-311G��(2d,2p) at
the MP2 level at theory).

The rNN intermolecular distance also shows an
important BSSE dependence, but this effect became
smaller and smaller in case of using large and well-
balanced basis sets and came near the experimental
value (rNN � 3.337 Å) [11]. Moreover, it is very
important to note that the existence of cyclic con-
figurations (Fig. 1b) as the global minimum sym-
metry is definitely a BSSE effect. When a BSSE-free
optimization technique is used, this configuration
becomes only a transition-state structure.

Another significant remark is that when density
functional theory methods are used, the intermedi-
ate configuration is very difficult to obtain; in al-
most all cases, the linear-bonded hydrogen struc-
ture were preferred [5, 6].

Considering the results, the following conclu-
sions can be drawn:

1. As can be expected, the BSSE-free CP and
CHA interaction energies usually show less
deep minima than those obtained from the
uncorrected methods both at the HF and at
the second-order Møller–Plesset perturbation
level of theory. From Table II it can be con-
cluded that apart from a few cases the values
of the intermolecular diagonal force constans
are significantly larger in the uncorrected

TABLE I ______________________________________________________________________________________________
Intermolecular coordinates for NH3–NH 3 dimer computed at the Hartree–Fock and second-order
Møller–Plesset perturbation theory (uncorr., CHA, CP) level, using 6-31G, 6-311G, 6-31 ��G, 6-311��G,
6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p), and 6-311��G(2d,2p) basis sets.

Basis set Method

rNN (Å) �HNN (deg) �NNH (deg) Config.

SCF MP2 SCF MP2 SCF MP2 SCF MP2

6-31G Uncorr. 3.27044 3.15915 39.020 38.348 39.019 38.348 Cyclic Cyclic
(30) CHA 3.32887 3.27304 85.836 87.619 5.736 5.785 Asymm. Asymm.

CP 3.35513 3.32433 83.722 84.652 6.768 7.106 Asymm. Asymm.
6-311G Uncorr. 3.25798 3.14432 39.998 39.524 39.998 39.524 Cyclic Cyclic

(44) CHA 3.37535 3.31263 87.197 88.504 6.154 6.403 Asymm. Asymm.
CP 3.39196 3.37575 85.832 86.249 6.694 7.547 Asymm. Asymm.

6-31��G Uncorr. 3.31842 3.21519 88.573 78.528 6.567 12.592 Asymm. Asymm.
(44) CHA 3.39594 3.32434 76.032 64.922 12.843 21.186 Asymm. Asymm.

CP 3.40294 3.34718 76.800 71.385 12.452 16.822 Asymm. Asymm.
6-311��G Uncorr. 3.32551 3.21757 92.624 81.988 5.054 10.759 Asymm. Asymm.

(58) CHA 3.38087 3.31480 77.584 76.027 12.457 14.218 Asymm. Asymm.
CP 3.38039 3.33264 77.633 74.330 12.649 15.612 Asymm. Asymm.

6-31G(d,p) Uncorr. 3.27596 3.13437 41.234 40.647 41.234 40.647 Cyclic Cyclic
(60) CHA 3.39126 3.30106 92.585 92.609 5.540 6.481 Asymm. Asymm.

CP 3.41875 3.33417 90.358 89.929 6.537 7.660 Asymm. Asymm.
6-311G(d,p) Uncorr. 3.28708 3.11678 41.784 41.244 41.783 41.244 Cyclic Cyclic

(74) CHA 3.45301 3.32905 92.333 92.104 6.568 7.890 Asymm. Asymm.
CP 3.48886 3.38795 91.292 90.577 6.867 8.309 Asymm. Asymm.

6-31��G(d,p) Uncorr. 3.40270 3.23422 87.783 85.780 10.063 12.466 Asymm. Asymm.
(74) CHA 3.44118 3.31066 77.128 73.363 15.170 19.114 Asymm. Asymm.

CP 3.44586 3.31185 77.180 69.866 14.914 20.916 Asymm. Asymm.
6-311��G(d,p) Uncorr. 3.44761 3.25961 90.992 91.413 8.629 10.082 Asymm. Asymm.

(88) CHA 3.47140 3.31352 80.070 76.171 13.703 17.136 Asymm. Asymm.
CP 3.46760 3.31682 80.130 73.615 13.838 18.857 Asymm. Asymm.

6-311��G(2d,2p) Uncorr. 3.49518 3.25790 83.116 78.799 12.686 15.908 Asymm. Asymm.
(118) CHA 3.50573 3.28425 81.003 75.933 13.594 17.412 Asymm. Asymm.

CP 3.50137 3.27440 78.695 68.033 14.954 22.099 Asymm. Asymm.
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case. In spite of this tendency, sometimes the
opposite effect also occurs, especially when
the basis sets used are not large enough. We
must emphasize that the results are very sen-
sitive to the applied basis sets and some of
them, such as 6-31G, 6-31G(d,p), etc., are not
really appropriate to describe the structure
and the molecular properties. But when dif-
fuse or diffuse and polarization functions are
used in the applied basis sets, in practically all
cases the counterpoise-corrected results are
fairly close to those given by the CHA-based
methods for all studied quantities. Concern-
ing the calculation of the harmonic vibrational
frequencies, there is no unambiguous ten-
dency between the corrected and uncorrected
results because the frequency values can

strongly depend upon the modified dimer ge-
ometries.

2. We also note that agreement between the CP
and CHA-corrected results both at the HF and
at correlated levels is very good. This obser-
vation is consistent with our previous studies
in the field of intermolecular interactions.
Similarly to our earlier results, the difference
between the uncorrected and corrected values
becomes smaller for large enough basis sets as
the values of the intermolecular interactions
converge.

3. It is also interesting to note, however, that the
values of the diagonal force constants and
harmonic vibrational frequencies of ammo-
nia–ammonia dimer calculated at the corre-
lated level are larger than those obtained from

TABLE II _____________________________________________________________________________________________
Intermolecular force constants for the NH3–NH3 dimer computed at the Hartree–Fock and second-order
Møller–Plesset perturbation theory (Uncorr., CHA, CP) level, using 6-31G, 6-311G, 6-31��G, 6-311��G,
6-31G(d,p), 6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p), and 6-311��G(2d,2p) basis sets.

Basis set Method

frr (a.u./A2) f�1�1
(a.u./Rad2) f�2�2

(a.u./Rad2)

SCF MP2 SCF MP2 SCF MP2

6-31G Uncorr. .020959 .031705 .029226 .039164 .029116 .039164
(30) CHA .026128 .026053 .013131 .014801 .037030 .043124

CP .017096 .020452 .012212 .014838 .035060 .044515
6-311G Uncorr. .019896 .028001 .028340 .037001 .028339 .037001

(44) CHA .020664 .023314 .011556 .013189 .033747 .040037
CP .016672 .019060 .013131 .013000 .033616 .036505

6-31��G Uncorr. .019300 .028067 .014563 .015793 .041412 .046379
(44) CHA .014080 .018001 .012765 .017692 .032732 .035477

CP .014424 .017531 .012433 .015035 .032529 .036372
6-311��G Uncorr. .019290 .027378 .015322 .013708 .042041 .043462

(58) CHA .015558 .018595 .013025 .015293 .032383 .037885
CP .015132 .018056 .012890 .014686 .032720 .037056

6-31G(d,p) Uncorr. .019350 .028546 .022292 .028567 .022293 .028567
(60) CHA .019060 .023498 .008929 .009895 .026525 .030508

CP .015600 .019712 .008010 .010374 .026525 .033485
6-311G(d,p) Uncorr. .017829 .027752 .020948 .027653 .020949 .027654

(74) CHA .021340 .021716 .007616 .008699 .022717 .027574
CP .013440 .017416 .006434 .008535 .021141 .026525

6-31��G(d,p) Uncorr. .015886 .025999 .009571 .011179 .027586 .036429
(74) CHA .012666 .017393 .010111 .011271 .023768 .028468

CP .012956 .017512 .009323 .010899 .023374 .027050
6-311��G(d,p) Uncorr. .013463 .022475 .008407 .009974 .024836 .034293

(88) CHA .012048 .016426 .008010 .009962 .021667 .027150
CP .012140 .016868 .008010 .010374 .021273 .026262

6-311��G(2d,2p) Uncorr. .010893 .019707 .006704 .008705 .020386 .029553
(118) CHA .010229 .017751 .006855 .009093 .019781 .027635

CP .010242 .017790 .007059 .010601 .019592 .026188
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the Hartree–Fock calculation. This behavior is
a direct consequence of the fact that, at the
correlated level, the interactions between the
molecules are much stronger.

4. In the BSSE-corrected calculations, both the
HF and MP2 levels of the cyclic state of the
ammonia–ammonia dimer disappeared and
instead, a new, so-called intermediate asym-
metric configuration is preferred. On the other
hand, by using diffuse functions in the basis
set, the quasilinear geometry of the dimer is
distorted, and an intermediate configuration
is favored.

5. Focusing to the correlated level, the amount of
BSSE in the intermolecular interaction ener-
gies is much larger than that at the HF level,
and this effect is also conserved in the values

of the force constants and harmonic vibra-
tional frequencies. All these results clearly in-
dicate the importance of the proper BSSE-free
correlation treatment with the well-defined
basis functions.

In this paper we performed calculations for the
geometries, force constants, and the intermolecular
harmonic vibrational frequencies of the ammonia
dimers. The calculations have been taken at both
Hartree–Fock and correlated (second-order Møller–
Plesset perturbation theory) levels of theory in sev-
eral different basis sets. Comparisons have been
made between the a posteriori Boys–Bernardi
“counterpoise” correction scheme and the a priori
“chemical Hamiltonian approach.” It can be con-
cluded from the results that there is practically no

TABLE III ____________________________________________________________________________________________
Intermolecular frequencies for the NH3–NH3 dimer computed at the Hartree–Fock and second-order Møller–
Plesset perturbation theory (Uncorr., CHA, CP) level, using 6-31G, 6-311G, 6-31��G, 6-311��G, 6-31G(d,p),
6-311G(d,p), 6-31��G(d,p), 6-311��G(d,p), and 6-311��G(2d,2p) basis sets.

Basis set Method

�2 (cm
1) �3 (cm
1) �4 (cm
1) �5 (cm
1) �6 (cm
1)

SCF MP2 SCF MP2 SCF MP2 SCF MP2 SCF MP2

6-31G Uncorr. 104.8 126.5 131.9 161.4 145.7 182.6 247.7 279.1 470.8 526.7
(30) CHA 126.3 132.7 150.6 155.0 209.9 234.7 355.7 374.5 515.0 539.4

CP 107.6 127.5 127.4 163.1 218.1 249.4 428.1 465.1 614.2 663.0
6-311G Uncorr. 98.9 117.1 128.9 151.2 131.5 158.0 245.2 270.4 482.5 527.4

(44) CHA 118.1 125.3 142.1 155.0 206.9 227.3 365.7 381.3 496.8 523.2
CP 115.7 116.9 150.6 145.9 215.4 239.4 428.0 439.8 583.2 601.7

6-31��G Uncorr. 125.9 119.8 135.0 141.0 138.6 155.6 292.7 296.9 404.7 449.5
(44) CHA 80.5 61.6 87.5 103.5 113.1 124.7 224.9 230.3 395.3 430.0

CP 81.9 76.6 89.7 118.4 114.7 126.6 225.8 244.2 393.9 427.0
6-311��G Uncorr. 125.9 114.9 144.6 149.4 149.5 156.7 313.9 306.4 421.6 436.0

(58) CHA 75.0 92.5 93.1 123.1 117.5 129.9 237.3 253.7 404.8 436.9
CP 74.0 88.3 93.0 118.1 118.6 127.5 237.1 247.8 404.7 430.0

6-31G(d,p) Uncorr. 89.8 107.1 118.6 140.0 127.0 151.6 231.9 254.5 437.6 473.9
(60) CHA 106.4 111.1 134.9 149.3 189.7 203.6 374.4 389.1 550.3 547.5

CP 93.6 120.5 120.7 148.3 193.0 208.1 376.3 405.0 623.0 605.2
6-311G(d,p) Uncorr. 88.2 120.6 116.4 135.9 122.4 151.1 222.1 246.1 423.8 463.0

(74) CHA 100.3 97.9 140.2 146.1 185.0 197.5 347.7 370.1 516.3 510.9
CP 77.8 100.9 112.2 134.4 189.8 202.8 339.4 367.0 589.1 555.5

6-31��G(d,p) Uncorr. 95.6 105.9 114.6 127.4 123.6 155.2 251.8 286.8 383.5 424.1
(74) CHA 78.3 49.4 89.0 99.2 117.6 131.5 202.9 226.0 377.1 404.3

CP 71.1 37.6 90.0 93.3 118.3 130.7 210.2 226.5 364.1 394.1
6-311��G(d,p) Uncorr. 90.5 102.3 114.7 131.7 116.0 146.8 248.3 290.3 363.3 407.2

(88) CHA 65.3 59.3 85.3 95.0 109.3 125.1 197.2 219.8 355.6 388.7
CP 59.2 62.3 84.6 88.5 110.7 131.2 202.7 221.5 347.6 380.3

6-311��G(2d,2p) Uncorr. 65.2 65.3 100.2 110.1 104.7 137.6 218.1 248.1 335.3 390.7
(118) CHA 63.0 57.4 96.0 104.9 101.5 129.2 205.4 229.0 339.0 392.5

CP 60.9 52.7 91.3 93.4 102.2 129.9 195.7 202.0 339.4 393.8
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difference between these two methods, so the a
priori CHA scheme can be considered as an ulti-
mate solution of the BSSE problem. We also found
that the basis set superposition error influence is
fairly significant in the studied quantities, so re-
moving this effect is very important.
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