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Abstract

The optimized geometries, force constants and the intermolecular harmonic
vibrational frequencies of the ammonia - water dimer have been studied
both at the Hartree-Fock and second-order Mgller-Plesset perturbation the-
ory (MP2) levels of theory using several different basis sets as (6-31G, 6-
311G, 6-31G**, 6-311G**, 6-31++G** and 6-3114++G**). The widely used
a posteriori Boys-Bernardi ” counterpoise” (CP) correction scheme has been
compared with the a priori method utilizing the “Chemical Hamiltonian
Approach” (CHA). The results show that practically there is no difference
between these two methods, so the a priori CHA scheme can be considered
as an ultimate solution of the BSSE problem. It is also concluded that
the basis set superposition error (BSSE) influence is very significant, so
removing this effect is very important.

®Permanent Institute Address: National Institute for Research and Development of
Isotopic and Molecular Technologies, P.O.Box 700, R-3400, Cluj-Napoca, Romania
> Corespondence to: A. Bende; abende@dtp.atomki.hu



Introduction

Studies of the intermolecular fundamentals of molecular complexes can
give important information on molecular interactions. Recently a number
of different theoretical and experimental [1-7] methods have been devel-
oped to study the structures of the ammonia - water hydrogen-bonded
complex. Theoretical studies showed that one can find stationary points
on the NHz — H,0 potential energy surface (PES) with two different C;
symmetries [6]. The values of the equilibrium energies belonging to the
different symmetries are very close to each other and strongly depend upon
the basis sets and the methods applied. The focal point of these studies was
to find the equilibrium structure and characteristic features of the PES of
this dimer. In this paper, we examine the equilibrium structure, the force
constants and the harmonic vibrational frequencies of the ammonia - water
dimers using Hartree-Fock method and Mgller-Plesset perturbation theory.
Our aim is to give a better and much more accurate description for these
quantities.

Most of the calculations for the hydrogen-bonded complexes are based
on the supermolecular approach in which the interaction energy of the
dimer is obtained as an energy difference between the supermolecule and the
monomers. However, this interaction energy often shows too deep minima
especially for the case of weakly bonded intermolecular systems as a conse-
quence of using finite basis sets in the calculations. This “phenomenon” is
called “basis set superposition error” (BSSE) and it is due to the fact that
the description of the monomer is actually better within the supermolecule
than the treatment of the free monomers by applying the same basis set.
So, the BSSE is a purely “mathematical effect” which appears only due to
the use of finite basis sets, leading to an incomplete description in the indi-
vidual monomers. Several numerical studies and analytical considerations
show that the amount of this BSSE effect can be very large even for fairly
big basis sets, so removing it in the practical calculations is very important.
Different techniques have been proposed to correct this artificial effect.

More than 30 years ago, Jansen and Ross [8] and, independently, Boys
and Bernardi [9] suggested an a posteriori “counterpoise correction” (CP)
scheme of calculating the monomer energies in the same basis set as used
for the supermolecule. This means that the description of the monomers is



adjusted to the dimer problem and the energies and other quantities of the
free monomers become distance-dependent.

In 1983 Mayer proposed a new a priori procedure to tackle the BSSE
problem. This is the so-called chemical Hamiltonian approach (CHA)
[10,11] which permits one to identify those terms of the Hamiltonian which
are responsible for the BSSE effects. By omitting these terms, one can get
wave functions free from artificial nonphysical delocalizations. Using this
CHA scheme several different approaches have been developed both at the
HF [12-21] and correlated [22-29] levels of theory. In our paper we use the
“CHA with conventional energy” (CHA/CE) version [13] to compute the
HF energy and Mgller-Plesset perturbation theory applied to CHA Hamil-
tonian (CHA-MP2) [24] for correlated level.

According to the previous studies, the results obtained from the Boys-
Bernardi and CHA methods are very close to each other, despite of the fact
that these schemes are conceptually very different. In this work we apply
both methods in order to study the structures, the force constants and
harmonic vibrational frequencies of the ammonia - water hydrogen-bonded
complex. Similar studies have been performed in an our earlier work [30]
for the hydrogen fluoride and water dimers.

The methods employed (CP, CHA/CE and CHA/MP2 ) are briefly ex-
plained in the next section. In section 3. the results for the ammonia - water
dimer are presented in several basis sets and the force constants and har-
monic vibrational frequencies obtained are compared and discussed. The
conclusions of the paper are given in the final section.

The methods applied (CP, CHA/CE and CHA /MP2)

The most popular a posteriori method correcting the BSSE is the Boys-
Bernardi counterpoise correction (CP) scheme introduced by Jansen and
Ross [8] and, independently, by Boys and Bernardi [9]. Applying this CP
scheme one has to recalculate the monomers in the basis of the whole super-
molecule for every geometrical arrangement. The CP-corrected interaction
energy AECT can be defined as the difference of the supermolecule and
monomer energies, all computed in the same supermolecule basis set:



E°P(AB) = Eap(AB) - Epssr (1)
= Eap(AB) — EA(AB) + Ea(A) — Eg(AB) + Ep(B).

Using eq. (1), in addition to the monomer energies one has to calculate
five different energy values [12] at every geometrical arrangement of the
system in order to determine the CP-corrected PES.

A conceptually different way of handling the BSSE problem is to ap-
ply the a priori “chemical Hamiltonian approach” (CHA) introduced by
Mayer [10,11]. The CHA procedure permits the supermolecule calculations
to keep consistency with those for the free monomer performed in their
original basis sets. The most important aspect of Mayer’s scheme is that
one can divide the Hamiltonian into two parts and omit those terms that
are responsible for the BSSE:

Hpo = Hopa + Hpssk. (2)

Here H Bo is the original Born-Oppenheimer Hamiltonian, I:ICH A 18 the
BSSE-free part of the Hamiltonian while the second term on the right
hand side corresponds to the BSSE. It has to be emphasized that as BSSE
is not a physical quantity, one cannot expect remaining part of the Hamilto-
nian Hepra to be Hermitian. Applying this non-Hermitian BSSE-free CHA
Hamiltonian Hc 4 and using the method of momenta instead of the vari-
tational principle appropriate Hartree-Fock type CHA-SCF [13] equations
were derived in order to calculate BSSE-free wavefunctions. As a results of
several numerical and analytical considerations [16-19] using this BSSE-free
wavefunction the energy of the system can be calculated as a conventional
expectation value of the original Born-Oppenheimer Hamiltonian and not
of the “chemical one”. (This is indicated by the expression “CHA with
conventional energy,” CHA/CE.) Here is our working formula:

< UonpalHpol¥eoma >
<VYeomalVcema >

Ecnajce = (3)
While to obtain Hartree-Fock type equations from the CHA Hamiltonian
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is a relatively straightforward procedure, the generalization of it to the
Moller-Plesset perturbation theory was a bigger task. As it was shown by
Mayer [31], the appropriate second order energy can be obtained as follows.
Firstly one has to calculate the first order CHA wavefunction y by using
the non-Hermitian Hamiltonian partitioned as HC HA = HO + VC HA, Where
HOY is the unperturbed Hamiltonian. The perturbed Vera operator is also
non-Hermitian because it is built up of the non-orthogonal eigenvectors
of the non-Hermitian CHA-SCF equations [13]. The original Hermitian
Born-Oppenheimer Hamiltonian Hpo can also be partitioned as a sum of
the same non-Hermitian unperturbed Hamiltonian H° and some new (also
non-Hermitian) perturbation V defined by V. = Hpo — H®. Using the
first order CHA wavefunction x, the generalized Hylleraas functional Jo
for non-Hermitian operators applied in the framework of the varitational-
perturbational method [24], can easily be calculated:

1 PN .
Jy = ————[2Re(< Qx|V|¥y > +Re(< x|H® — Eolx >)].  (4)
< Wo|¥ps

and the second order energy will be given by

@) _ < \I/0|I‘:rBo|\Ifo >

E
< Wyl Ty >

+ . (5)

Here ¥ is the unperturbed wavefunction, Ey is the zero order energy
(ﬁo\llo = Ey¥y)and Q is the projection operator an to the orthogonal
complement to ¥y. These equations define our working formula at the
second order perturbation level. This formalism is called “CHA/MP2”
theory [24].

Computational Details

The calculations were carried out partly in Heidelberg on a Hewlett-
Packard cluster and partly in Debrecen on a Pentium 200 PC and Compaq
Alpha running under Linux. The standard HF, MP2 and the CP-corrected
HF, MP2 calculations were performed by the Gaussian 98 computer code
[32]. The CHA/CE and CHA/MP2 type calculations were done by gener-
ating the input data (integrals and RHF orbitals) with a slightly modified
version of HONDO-8 [33].
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In these calculations the CHA/SCF code [13] and the CHA/MP2 pro-
gram of Mayer and Valiron [24,26] were used. For the frequency calculations
based on GF Wilson method [34], the program written by Beu [35] was
applied. The NHs — H2O dimer geometries were optimized using conven-
tional Hartree-Fock and second order Mgller-Plesset perturbation theories
for each basis set.

We considered six different basis sets as 6-31G, 6-311G, 6-31G**, 6-
311G**, 6-31++G** and 6-311++G**, which are standard Pople basis
sets.

The conventional supermolecule geometries were optimized both at HF
and MP2 levels applying the analytical gradient method included in the
Gaussian 98, while the CHA and CP-corrected geometries were calculated
by using a numerical gradient method (Inverse Parabolic Interpolation [36])
in internal coordinates. So as to test the applicability of our numerical gra-
dient method we have performed several sample calculations using both this
latter method and the analytical gradient built into Gaussian 98, respec-
tively. As a consequence, there is practically no difference between them
for conventional uncorrected cases we have also performed similar calcula-
tions to check the values of the force constants and harmonic vibrational
frequencies. The uncorrected HF and MP2 results for the force constants
(in internal coordinates) and for the harmonic vibrational frequencies were
obtained by using the standard routines of the Gaussian 98 program. As
for the CHA and CP-corrected calculations at first the numerical second
derivatives of the energies were calculated to obtain the CHA and CP force
constants and then the NOMAD program [35] was applied to obtain the
appropriate CHA and CP harmonic vibrational frequencies. As we were
interested in the BSSE content in the interaction energies, only those com-
ponents of the force constant matrix calculated by Gaussian98 program
were recalculated which correspond to intermolecular interactions.
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Figure 1: Structure I of the ammonia - water dimer.

Results and Discussions

The results obtained for the geometry of the ammonia - water dimer using
the conventional, CHA and CP schemes, both at the HF and MP2 levels,
are presented in Table 1. The uncorrected and BSSE-corrected (CHA and
CP) values show that ammonia - water complex has two different equilib-
rium geometry (Structure I. and Structure I1.) both having Cs symmetries.
Structure T (Fig. 1) is typical for HF level where Hy, O, Hs of water and
N, H; of ammonia define the o5 symmetry plane of molecular complex
(Hy and Hj are out of this oj symmetry plane) while Structure IT (Fig.
2) is characteristic for MP2 level where Hy, O, Hs of water and N, Hy of
ammonia define the o, symmetry plane of the dimer (H; and Hj are out
of o}, symmetry plane).
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Table 1

Intermolecular coordinates for the N H3 — HoO dimer computed at the
Hartree-Fock and second-order Mgller-Plesset perturbation theory
(uncorrected, CHA and CP) levels, using 6-31G, 6-311G, 6-31G**,
6-311G**, 6-31++G** and 6-3114++G** basis sets. ron the distance

between O and N atoms given in Angstrom (A) while a; and as are angles
defined by H; — O bond of water and ron and by N — H3 bond of ammonia
and ron, respectively. Angles are given in degree (Deg.).
/The number of basis functions are given in parenthesis/

Basis set Method ron(A) a1 (Deg.) as(Deg.)
SCF MP2 SCF MP2 SCF MP2
6-31G Uncorr. 2.9551 29391 115.18 113.91 9943 11247
(28) CHA 2.9896 3.0044 116.07 104.64 99.09 107.21
CPp 2.9812 2.9840 116.45 11544 99.00 112.72
6-311G Uncorr. 2.9392 2.8910 115.00 114.02 101.37 111.94
(41) CHA 3.0303 3.0301 115.71 107.51 100.14 108.84
CPp 3.0471 3.0643 115.76 115.10 100.24 112.97
6-31G** Uncorr. 3.0504 2.9614 108.25 107.02 105.27 100.70
(55) CHA 3.0742 3.0275 108.98 107.66 105.40 101.08
CPp 3.0784 3.0248 109.15 108.38 105.27 100.13
6-311G** Uncorr. 3.0545 2.9359 107.17 103.63 106.47 116.06
(68) CHA 3.1363 3.0676 107.52 98.22 105.83 114.03
Cp 3.1470 3.0987 107.53 104.10 105.76 117.28
6-31++G**  Uncorr. 3.0443 2.9355 111.89 112.54 104.38 117.76
(68) CHA 3.0934 3.0483 111.75 101.69 103.73 112.40
Cp 3.1054 3.0253 111.90 112.50 103.57 118.63
6-311++G**  Uncorr. 3.0750 2.9386 110.40 109.94 105.23 118.05
(81) CHA 3.1102 3.0305 110.25 100.02 104.43 113.42
Cp 3.1105 3.0217 110.54 109.56 104.25 118.95

ron(exp.) = 2.983 A Ref.[5]
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Figure 2: Structure II of the ammonia - water dimer .

The (O --- N) bond shows an important BSSE content, which converges
to the experimental value (=~ 2.983 A) if we use large basis sets with high-
polarization functions. At the same time we made comparative calcula-
tions using Aug-cc-pVDZ and cc-pVTZ Dunning’s basis sets at MP2-CHA
and MP2-CP levels and we got 2.9790 A and 2.9874 A value, respectively
for 7(O--- N) bond distance. Whereas, in case of a(H; — O---N) and
a(O--- N — Hs) angles this BSSE-content is imperceptible, only at MP2
level can be found small deviations. Furthermore the BSSE effects cannot
change the geometry structure obtained in uncorrected case.

Table 2. contain the results obtained for the diagonal force constants
of the ammonia - water dimer for the uncorrected, CHA and CP-corrected
cases, both at the HF and MP2 levels. In Table 3. we present the con-
ventional, CHA and CP-corrected results, both at the HF and MP2 levels
for the intermolecular harmonic vibrational frequencies (vg,v9, V19 and v13)
of the ammonia - water dimer. The molecular complex has fifteen non-
degenerated normal modes: three normal modes are characteristic to water
molecule, six are characteristic to ammonia molecule while the six normal
modes left have intermolecular trait. The previous frequency notation (in-
dex) were introduced by Yeo et al. (Ref.[2]) where vg, vy, 110, 113, V14 and
v15 represent frequencies corresponding to intermolecular normal modes.
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Table 2

Intermolecular force constants for the N Hy — HoO dimer computed at the
Hartree-Fock and second-order Mgller-Plesset perturbation theory
(uncorrected, CHA and CP) levels, using 6-31G, 6-311G, 6-31G**,

6-311G**, 6-31++G** and 6-311++G** basis sets. f,, is the diagonal force
constant corresponding to ron internal coordinate given in atomic unit/

Angstrom square (a.u./A?), fa,a, is the diagonal force constant corresponding to
a; angle given in atomic unit/ Radian square (a.u. /Radg), while fq,q, is

the diagonal force constant corresponding to ae angle given in atomic
unit/Radian square (a.u. /Radg).
/The number of basis functions are given in parenthesis./

Basis set Method  fr (a.t./A2)  fo,a (a.u./Rad®)  fo,a,(a.u./Rad?)
SCF MP2 SCF MP2 SCF MP2
6-31G Uncorr. .04904 .05430 .05314  .06061  .02488  .02411
(28) CHA .04949 .05092 .05226  .05510  .02495  .02497
Cp .04650 .04951 .06894  .06145 .03611  .02521
6-311G Uncorr. .05234 .06281 .05268 .06176  .02661 .02688
(41) CHA .04745 .05296 .04911  .05430 .02167  .02246
Cp 03996 .04153 .04281  .04675  .02101 .02035
6-31G** Uncorr. .03669 .04577 .03750  .04762  .01524  .01704
(55) CHA .03857 .04231 .03887  .04613  .01589  .01866
Cp 03535 .03993 .03834  .04465  .01641 .01720
6-311G** Uncorr. .03737 .05095 .03583  .04664 .01606  .01946
(68) CHA 03122 .03768 .03125  .03741 .01431 .01542
CPp .02868 .03214 .03138  .03651  .01405  .01550
6-31++G**  Uncorr. .03512 .04720 .03855 .05221  .01818  .02027
(68) CHA .02945 .03137 .03506  .03979  .01471 .01567
Cp .02868 .03373 .03322  .04123  .01287  .01353
6-311++G**  Uncorr. .03157 .04341 .03538 .04795 .01691  .01970
(81) CHA 02552 .03429 .03217  .03877  .01366  .01486
Cp 02787 .03374 .03257  .03782  .01444  .01261
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Table 3

Intermolecular frequencies for the N Hy — HoO dimer computed at the
Hartree-Fock and second-order Mgller-Plesset perturbation theory
(uncorrected, CHA and CP) levels, using 6-31G, 6-311G, 6-31G**,

6-311G**, 6-314++G** and 6-311++G** basis sets. The vy, vy, vg and

v13 are frequencies corresponding to intermolecular normal modes.

/The number of basis functions are given in parenthesis./

Basis set Method  vig(em™1) vo(em™1) vg(em™1) vi3(em™1)
SCF MP2 SCF MP2 SCF MP2 SCF MP2
6-31G Uncorr. 205.5 193.3 214.8 220.6 505.5 518.3 7934 793.6
(28) CHA 203.1 201.2 212.8 211.7 485.8 464.3 701.6 T713.5
Ccp 2319 2014 287.1 219.3 573.3 522.5 795.8 792.6
6-311G Uncorr. 1985 180.5 217.3 231.6 5134 528.9 8028 819.6
(41) CHA 187.3 174.2 205.9 207.0 472.2 4654 713.9 7228
Ccp 159.3 1127 188.4 189.2 467.2 464.0 799.7 816.0
6-31G** Uncorr. 161.5 168.3 181.6 200.2 423.8 455.3 662.2 704.4
(55) CHA 168.2 171.3 186.4 204.1 419.4 445.1 645.8 687.0
CPp 168.5 160.2 185.6 195.3 428.0 438.0 661.7 703.0
6-311G** Uncorr. 165.1 171.5 181.2 207.8 423.3 459.2 656.1 717.5
(68) CHA 150.9 140.6 166.7 178.3 384.8 396.2 639.4 704.6
Ccp 148.7 133.2 164.2 166.4 396.6 409.4 654.8 715.5
6-31++G** Uncorr. 187.6 2029 193.6 2126 435.8 485.1 692.1 757.8
(68) CHA 161.6 157.1 178.1 163.7 402.7 406.1 671.4 7484
CPp 153.6 151.7 174.0 181.6 406.1 435.2 690.3 755.9
6-311++G**  Uncorr. 182.3 201.2 185.8 206.8 423.8 469.6 666.7 731.8
(81) CHA 155.1 1589 171.5 170.3 390.9 407.1 649.5 726.0
CPp 165.5 148.0 173.9 179.6 405.7 422.8 665.5 729.8
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Table 4

Bands observed in the region 800 — 10 ¢rm ™! in cryogenic matrices and
their possible assignment to the water - ammonia complex or to
multimers.

Wavenumber (cm 1)

N$ N Ne¢ Are  Ar? Kr¢  Assignment
600 662 638 638 631 Vi3
440 439 430 419 420 417 Vg
420 414 411 402 402 390 ?
} 334 } Combinations
295 311

202 197 vy

180 193 V10

20 V15
“Ref. [2].
PRef. [3)].
‘Ref. [4].

Bands observed in the region 800 —10 ¢m ™! in different Ny, Ne, Ar and Kr
cryogenic matrices and their potential assignment to the water-ammonia
complex or to multimers (Ref. [2]) are presented in Table 4.

Considering the results, the following conclusions can be drawn: i) As
it can be expected the BSSE-free CP and CHA interaction energies usually
show less deep minima than those obtained from the uncorrected methods
both at the HF and at the second order Mgller-Plesset perturbation level
of theory. From Tables 2 it can be concluded that apart from a few cases
the values of the intermolecular diagonal force constants are significantly
larger in the uncorrected case. In spite of this tendency sometimes oppo-
site the effect also occurs, especially when the basis sets used are not large
enough. We have to emphasize that the results are very sensitive to the
applied basis sets and some of them as 6-31G, 6-31G** etc. are not really
appropriate to describe the structure and the molecular properties. Con-
cerning the calculation of the harmonical vibrational frequencies, there is
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no unambiguous tendency between the corrected and uncorrected results
because the frequency values can strongly depend upon the modified dimer
geometries but in generally the BSSE-free frequency values make up to
the experimental values presented in Table 4. ii) We also note that the
agreement between the CP and CHA-corrected results both at the HF and
at correlated levels are very good. This observation is consistent with our
previous studies in the field of intermolecular interactions. iii) Similarly
to our earlier results, the difference between the uncorrected and corrected
values become smaller for large enough basis sets as the values of the inter-
molecular interactions converge to each other. v) It is also interesting to
note, however, that the values of the diagonal force constants and harmonic
vibrational frequencies calculated at correlated level are larger than those
obtained from the Hartree-Fock calculation. This kind of behavior is a
direct consequence of the fact that the correlated level the interactions be-
tween the molecules are much stronger. v) Focusing to the correlated level,
the amount of BSSE in the intermolecular interaction energies is much
larger than the one we get at the HF level and this effect is also conserved
in the values of the force constants and harmonic vibrational frequencies.
All these results clearly indicate the importance of the proper BSSE-free
correlation treatment with the well defined basis functions.

Summary

The optimized geometries, the intermolecular force constants and the
harmonic vibrational frequencies of the ammonia - water dimer have been
studied both at the Hartree-Fock and correlated (second-order Mgller-
Plesset perturbation theory) levels of theory using several different basis
sets as (6-31G, 6-311G, 6-31G**, 6-311G**, 6-314+4+G** and 6-311++G**).
The widely used a posteriori Boys-Bernardi ” counterpoise” (CP) correction
scheme has been compared with the a priori method utilizing the “Chemi-
cal Hamiltonian Approach” (CHA). The results show that practically there
is no difference between these two methods, so the a priori CHA scheme
can be considered as a solution of the basis set superposition error (BSSE)
problem. It is also concluded that the BSSE influence is very significant,
so removing this effect is very important.
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