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ABSTRACT: Theoretical studies have been performed to calculate the force
constants and harmonic vibrational frequencies in the hydrogen fluoride and water
dimers. The calculations have been undertaken both at the Hartree–Fock and correlated
(second-order Møller–Plesset perturbation theory) levels of theory using several
different basis sets ranging from the weak to the intermediate. The basis set
superposition error (BSSE) has been excluded by using the chemical Hamiltonian
approach. The results show that the BSSE influence is significant in the force constants
and harmonic vibrational frequencies even if electron correlation is accounted for, so
removing the BSSE is important. The results are compared with those obtained by the
basis independent density-functional tight-binding method. © 2003 Wiley Periodicals, Inc.
Int J Quantum Chem 92: 152–159, 2003
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Introduction

H ydrogen bonds play an essential role in bio-
physics and biochemistry. In the recent past a

number of different theoretical and also experimen-

tal methods have been developed to study the in-
teraction energies and structures of hydrogen-
bonded complexes [1, 2]. The main goal is to give
better and more accurate description of these quan-
tities. Most of the calculations for the hydrogen-
bonded complexes are based on the supermolecular
approach in which the interaction energy of the
dimer is obtained as an energy difference between
the supermolecule and the monomers. However,
this interaction energy often shows too deep min-
ima, especially for the case of weakly bonded inter-
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molecular systems as a consequence of using finite
basis sets in the calculations. This “phenomenon” is
called a basis set superposition error (BSSE) and is
due to the fact that the description of the monomer
is actually better within the supermolecule than
that which one has for the free monomers by ap-
plying the same basis set. So, the BSSE is a purely
“mathematical effect” that appears only due to the
use of finite basis sets, which leads to an incomplete
description in the individual monomers. Several
numerical studies and analytic considerations [3–5]
show that the amount of this BSSE effect can be
large even for fairly big basis sets, so removing it in
the practical calculations is important. During the
last three decades different approaches have been
developed to take into account this “finite basis
effect” [6–13]. The most simple and straightforward
a posteriori correction scheme, introduced by Boys
and Bernardi, is usually called “BB or CP (counter-
poise correction) method” [7]. In the CP scheme the
energy of the monomers are recalculated by using
the full basis of the supermolecule and these cor-
rected monomer energies are used when one com-
putes the interaction energy of the complex. A con-
ceptually different a priori method to solve the
BSSE problem was developed by Mayer [14] in
1983. This procedure is based upon the so-called
“chemical Hamiltonian approach” (CHA) and per-
mits one to identify those terms of the Hamiltonian
that actually cause BSSE. Omitting these terms, one
gets a “physical” Hamiltonian, which leads to wave
functions that are free from the nonphysical delo-
calizations caused by BSSE. Several approaches
have been developed using the CHA scheme both
at the Hartree–Fock (HF) level [15–24] and using
second-order perturbation theory [25–28]. A huge
number of calculations has been performed in the
last decade by applying this CHA to study the
structures and interaction energies for different van
der Waals and hydrogen-bonded systems [29–32].
In these calculations different systems were inves-

tigated, from the small to the large and biologically
interesting “bimolecular complex” (like formamid
dimers and DNA basis pairs) [31, 32] by using a
variety of different basis sets. It has been concluded
that in all cases a remarkable agreement has been
found with the results given by Boys and Bernardi’s
CP method.

Our aim in this article is to perform calculations
of the force constants and harmonic frequencies of
different bimolecular complexes to test the applica-
bility of the CHA scheme for this particular prob-
lem, which has not been studied previously. As a
starting point we chose two relatively small and
simple hydrogen-bonded systems, the (HF)2 and
(H2O)2 dimers, for which numerous experimental
and theoretical data exist [33–35]. We also com-
pared the results obtained for the (H2O)2 dimer
with the results obtained by the self-consistent
charge, density-functional tight-binding (SCC-
DFTB) [35–41] method.

The methods applied (CHA/F, CHA/MP2, and
SCC-DFTB) are briefly reviewed in the next section.
In the third section the results of the calculations
performed on hydrogen fluoride and water dimers
are presented in several different basis sets and the
force constants and harmonic vibrational frequen-
cies obtained are compared and discussed.

Methods (CHA/HF, CHA/MP2, and
SCC-DFTB)

CHA SCHEME

In the a priori CHA scheme we omit those terms
of the Hamiltonian that cause BSSE. The CHA pro-
cedure permits the supermolecule calculations to
keep consistency with those for the free monomers

FIGURE 1. The geometry of the HF dimer; r � dis-
tance between the H(1) and F(2); �1 � angle between
F(1) � H(1) and H(1) . . . F(2) bonds; �2 � angle be-
tween H(1) . . . F(2) and F(2) � H(2) bonds.

FIGURE 2. The geometry of the H2O dimer; r � dis-
tance between the O(1) and O(2); �1 � angle between
H(1) � O(1) and O(1) . . . O(2) bonds; �2 � angle be-
tween O(1) . . . O(2) and O(2) � H(2) bonds.
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performed in their original monomer basis sets. The
only difficulty of this scheme is that the resulting
CHA Hamiltonian is not Hermitian: As the BSSE is
not a physical phenomenon, there cannot be any
Hermitian operator corresponding to it—so one
cannot expect the BSSE-free Hamiltonian ĤCHA to
be Hermitian, either. Based on this CHA Hamilto-
nian Mayer and Vibók developed different SCF-
type equations [15]; and, this was extended by
Mayer and Valiron to the second-order Møller–
Plesset perturbational level [27]. These methods
provide the appropriate BSSE-free wave functions.
Both the numerical calculations [21–24] and the
analytic considerations [19] indicated that the en-
ergy of the system should be calculated as a con-
ventional expectation value of the original Born–
Oppenheimer Hamiltonian by using the BSSE-free
wave function, and not of the expectation value of
“physical Hamiltonian” [20]. (This complex scheme
of calculating the energies is usually denoted by the
expression “CHA with conventional energy,”
CHA/CE.)

While the derivation of the SCF-type equations
in the CHA framework is a relatively simple pro-
cedure, the generalization of it to the Møller–Plesset
perturbational theory was a bigger task. As shown
by Mayer [42], the appropriate second-order energy
can be obtained in the following manner: First, one
has to calculate the first-order CHA wave function
� by using the non-Hermitian CHA Hamiltonian
partitioned as ĤCHA � Ĥ0 � V̂CHA, where Ĥ0 is a
Møller–Plesset-type unperturbed Hamiltonian. The
latter is also non-Hermitian, as it is built up of the
nonorthogonal eigenvectors of the non-Hermitian
CHA-SCF equations [15]. The usual Hermitian
Born–Oppenheimer Hamiltonian Ĥ can then be
partitioned as a sum of the same non-Hermitian
unperturbed Hamiltonian Ĥ0 and of some (also
non-Hermitian) perturbation V̂, that is, V̂ � Ĥ � Ĥ0.
Using the first-order CHA wave function �, one can
calculate the generalized Hylleraas functional J2
and obtain the second-order energy correction as
[42].

J2 �
1

��0��0� �2 Re��Q̂��V̂��0 � Re����Ĥ0 � E0���	
.

(1)

Here, �0 is the unperturbed wave function, E0 is the
zero-order energy (Ĥ0�0 � E0�0), and Q̂ is the
projection operator to the orthogonal complement
to �0. This generalized Hylleraas functional repre- T
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sents the appropriate application of the CHA
scheme with conventional energy calculation for
the perturbational problem. This formalism is
called CHA/MP2 [27]. In this perturbation theory
the zeroth-order energy can be calculated as the
sum of the occupied orbitals energies. Despite the
fact that the CHA Hamiltonian is not Hermitian,
the occupied orbital energies were always obtained
as real numbers, providing E0 to be real. In few
cases one obtains complex virtual orbital energies,
but because they always appear in complex conju-
gate pairs the calculated CHA/MP2 energy correc-
tions are always real [27].

SCC-DFTB METHOD

Recently the approximate quantum mechanical
(SCC-DFTB) method was developed for organic
molecules [36–39]. This method is comparable in
computational speed with the AM1 and PM3 meth-
ods and is derived from DFT by an expansion of the
DFT total energy up to second order in the charge
density fluctuations �� around a reference density
�0 [38, 39]. The subsequent approximations lead to
a generalized eigenvalue problem that has to be
solved self-consistently for atomic charges. The
method can be seen as an extension of so-called
tight binding (TB) methods to charge self-consis-
tency. All parameters of this model are calculated
from DFT and the method is therefore called the
SCC-DFTB scheme.

The second-order terms in the density fluctua-
tions are approximated by a simple distribution of
atom-centered point charges ��� � q� � q�

0, esti-
mated by a Mulliken charge analysis. The approx-
imate DFT energy functional becomes

Etot � �
i

occ �
��

c�
i c�

i H�� ��0
 �
1
2 �

�	

�q��q	
�	 � Erep��0
.

(2)

The Hamilton matrix elements H��[�0] are calcu-
lated within DFT-GGA in a two-center approxima-
tion using a minimal basis of atomic-like wave
functions ��. The second term on the right side of
Eq. (2) represents the long-range Coulomb interac-
tions between point charges at different sites and
includes the self-interaction contributions of the
single atoms. Erep[�0] is approximated as a sum of
two-body interactions, Erep � ¥��	 U(R�	), which
are determined by comparing bond stretching en-
ergies calculated from the SCC-DFTB method with
those from DFT calculations.

The results for reaction energies, geometries, and
frequencies for small organic molecules have been
presented elsewhere [36, 37]. The mean average
deviations from experimental values are compara-
ble to full DFT calculations. The method has also
been benchmarked for biologically relevant mole-
cules, H-bonded complexes, small peptides, and
H-bonded stacking DNA base pair interactions

TABLE II ______________________________________________________________________________________________
Intermolecular frequencies for the HF dimer computed at the HF/CHA-HF and MP2/CHA-MP2 levels using 6-
31G, 6-311G, 6-31G**, 6-311G**, 6-31��G**, 6-311��G**, cc-pVDZ, cc-pVTZ, Aug-cc-pVDZ, and Aug-cc-pVTZ
basis sets.

Basis/method

�1 (cm�1) �2 (cm�1) �3 (cm�1)

HF
CHA-

HF MP2
CHA-
MP2 HF

CHA-
HF MP2

CHA-
MP2 HF

CHA-
HF MP2

CHA-
MP2

6-31G 165.34 180.16 137.91 173.96 223.84 221.88 246.12 248.64 568.27 559.71 620.91 575.36
6-311G 152.47 160.74 135.44 173.34 215.09 193.40 235.41 224.06 551.11 507.64 618.12 531.68
6-31G** 127.10 154.03 131.74 144.63 230.85 226.72 233.60 224.81 600.44 544.91 746.61 561.81
6-311G** 144.55 147.97 107.02 151.50 200.94 203.54 208.91 214.68 538.25 497.53 584.95 520.18
6-31��G** 142.23 139.58 156.32 135.41 203.85 202.81 218.33 199.24 523.36 509.17 569.27 514.10
6-311��G** 141.10 133.76 145.75 133.48 191.92 180.97 202.58 191.44 503.37 466.10 536.72 482.27
cc-pVDZ 152.28 162.00 122.94 163.10 209.37 217.19 232.28 222.35 560.49 568.68 643.51 546.43
cc-pVTZ 135.69 138.20 153.48 161.65 190.36 193.48 208.24 221.24 509.56 498.17 599.50 557.27
Aug-cc-pVDZ 135.59 138.88 159.78 146.47 198.11 195.51 220.60 198.71 502.71 492.45 581.62 524.58
Aug-cc-pVTZ 134.05 131.28 193.50 193.03 497.84 493.83
Exp. 125 161 475
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[38–40]. Vibrational frequencies for small model
peptides have been compared with results of B3LY
P/6 � 31G* and MP2/6 � 31G* calculations and
the vibrational absorption and the vibration circular
dichroism spectra have been evaluated within an
SCC-DFTB/DFT hybrid scheme, leading to a good
agreement with the results of ab initio methods [41].
The benchmarks performed so far have been satis-
factory, showing that the SCC-DFTB method is able
to give a reliable description of several biologic
model molecules.

Results and Discussion

The calculations have been carried out partly in
Heidelberg on a Hewlett-Packard cluster and partly
in Debrecen on a Pentium 200 PC running Linux. In
the standard HF and MP2 calculations the Gaussian
98 computer code [43] was utilized while the CHA-
type calculations were performed by generating the
input data (integrals and RHF orbitals) with a
slightly modified version of HONDO-8 [44].

In these calculations we used the same CHA/HF
program as in [15] and the CHA/MP2 program of
Mayer and Valiron [27, 45]. For the frequencies
calculations based on the Wilson’s G-F method, the
program written by Beu [46] was applied. The HF
and H2O dimers geometries were optimized using
the conventional HF and second-order Møller–
Plesset perturbation theory (MP2) for each basis set.

Several different basis sets were used: 6-31G,
6-311G, 6-31G**, 6-311G**, 6-31G**��, 6-311G**��,
cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ.
From the 6-31G to the 6-311G**�� are standard
Polpe basis sets, while cc-pVDZ to aug-cc-pVTZ are
Dunning’s correlation consistent basis sets. We had to
enter the cc-pVXZ and aug-cc-pVXZ (X � D, T) basis
sets in to HONDO-8 as external basis sets. A small
difficulty should be noted in this connection:
HONDO-8 only performs calculations by using 6d
and 10f functions, while the cc-pVXZ and aug-cc-
pVXZ basis sets are assumed to use pure d and f
functions. This may cause minor discrepancies in the
comparisons.

The uncorrected dimer geometries were opti-
mized both at HF and MP2 levels using the analytic
gradient method implemented in Gaussian 98,
while the CHA geometries were calculated using a
numerical gradient method in internal coordinates.
To test the latter method we performed some sam-
ple calculations using both the analytic gradient
method implemented in Gaussian 98 and our nu-T
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merical gradient code, respectively. Practically no
difference has been found between them in conven-
tional uncorrected cases. A similar test has been
made for the force constants and harmonic frequen-
cies. The conventional HF and MP2 calculations for
the force constants (in internal coordinates) and
harmonic vibrational frequencies have been calcu-
lated with the standard routines of Gaussian 98
code. In the CHA framework at first we calculated
the numerical second derivatives of the energies to
obtain the CHA force constants; then, using these
data the NOMAD program [46] was applied to
calculate the appropriate CHA harmonic frequen-
cies. As we were interested in the BSSE content in
the interaction energies between the monomers,
only those components of the force constant matrix
were recalculated which correspond to the intermo-
lecular interactions.

Table I displays the results obtained for the di-
agonal force constants of the HF dimer for the
uncorrected and CHA schemes both at the HF and
MP2 perturbation levels of theory.

Table II shows the results obtained for the har-
monic vibrational frequencies using the force con-
stants presented in Table I. In Tables III and IV the
same kind of results as Tables I and II are presented
but for the H2O dimer. For the sake of comparison,
in Table V we present harmonic vibrational fre-
quencies obtained from the basis-independent
SCC-DFTB method.

Considering the results, the following conclu-
sions can be drawn:

1. In accord with the observation that the BSSE-
free CHA interaction energies usually exhibit
less deep minima than those given by the
uncorrected methods both at the HF and at
the correlated levels of theory, in most cases
the values of the diagonal force constants are
significantly larger in the uncorrected case.
Sometimes the opposite effect also can be ob-
served, which probably is the consequence of
using not large enough basis sets. It has also
been found that the BSSE-uncorrected geom-
etries, both as the HF and correlated levels of
the theory calculated in the 6-31G** basis set,
differ much from the others. However, this
discrepancy, already observed by Salvador et
al. [47], more or less has been restored by
using our CHA scheme. Turning to the calcu-
lation of the harmonic vibrational frequencies,
no rigorous tendency was found because the
frequency values can strongly depend on the
modified dimer geometries.

2. As can be expected, the difference between

TABLE IV _____________________________________________________________________________________________
Intermolecular frequencies for H2O dimer computed at the HF/CHA-HF and MP2/CHA-MP2 levels using 6-31G,
6-311G, 6-31G**, 6-311G**, 6-31��G**, 6-311��G**, cc-pVDZ, cc-pVTZ, Aug-cc-pVDZ, and Aug-cc-pVTZ basis
sets.

Basis/method

�1 (cm�1) �2 (cm�1) �3 (cm�1)

HF
CHA-

HF MP2
CHA-
MP2 HF

CHA-
HF MP2

CHA-
MP2 HF

CHA-
HF MP2

CHA-
MP2

6-31G 177.12 181.96 151.91 173.74 205.43 211.30 205.74 211.96 407.01 412.57 409.21 418.86
6-311G 186.52 179.23 163.63 153.81 217.45 210.19 229.94 214.34 404.56 391.52 403.73 390.23
6-31G** 137.91 142.14 141.77 144.54 177.04 190.59 204.63 204.22 377.18 380.23 428.78 413.20
6-311G** 135.91 127.88 134.88 125.20 171.75 164.02 187.05 173.99 347.87 340.35 384.32 368.91
6-31��G** 144.82 136.51 169.26 141.30 174.55 162.59 202.55 171.06 338.62 328.04 373.81 339.58
6-311��G** 148.79 138.07 170.50 147.43 165.71 157.13 202.83 172.24 324.01 311.05 384.74 352.65
cc-pVDZ 140.72 128.33 149.73 113.32 170.39 164.05 195.02 170.11 348.65 336.58 408.10 367.22
cc-pVTZ 132.86 132.92 148.60 157.89 149.86 152.37 180.50 193.76 319.85 324.61 372.12 376.90
Aug-cc-pVDZ 129.73 129.29 154.47 143.12 154.90 156.21 186.63 179.05 320.22 314.28 371.15 350.79
Aug-cc-pVTZ 130.57 128.56 151.48 151.29 307.76 304.02
Exp. 150 — 320

TABLE V ______________________________________
Intermolecular frequencies for H2O dimer computed
at the SCC-DFTB theory level.

Method
�1

(cm�1)
�2

(cm�1)
�3

(cm�1)

SCC-DFTB 143.19 212.63 322.16
Exp. 150 — 320
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the values of the uncorrected and CHA-cor-
rected results become smaller in large enough
basis sets as the values of the intermolecular
interactions converge to each other.

3. Another interesting observation is that the
values of the diagonal force constants and
harmonic vibrational frequencies calculated at
the correlated level are larger than those ob-
tained from the HF-type calculation. This ef-
fect is a direct consequence of the fact that at
the correlated level the interactions between
the molecules are much stronger.

4. Turning to the correlated level, the amount of
the BSSE content in the intermolecular inter-
action energies is much larger than that at the
HF level and this effect manifests in the values
of the force constants and harmonic vibra-
tional frequencies too.

5. Concerning the experimental and basis set-
independent (SCC-DFTB) results, they are
fairly close to each other and the CHA results
converge slightly better to these numbers than
those obtained from the conventional uncor-
rected calculations.

Summary

We performed calculations of the force constants
and harmonic vibrational frequencies of the hydro-
gen fluoride and water dimers. The calculations
have been undertaken both at the HF and corre-
lated (MP2) levels of theory using several different
basis sets ranging from the small to the intermedi-
ate. The results were compared with those given by
the basis set-independent (SCC-DFTB) method. We
also took into account the BSSE by applying the
CHA. The results show that the influence of BSSE
content is significant on the force constants and
harmonic vibrational frequencies, so removing it is
important.
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22. Mayer, I.; Vibók, Á. Int J Quantum Chem 1991, 40, 139.
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